African Journal of Ecology

Hot birds drink more: patterns and drivers of water visitation in a fynbos bird community

Journal:	African Journal of Ecology
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Lee, Alan; Percy Fitzpatrick Institute of African Ornithology; South African National Biodiversity Institute Barnard, Phoebe; Percy Fitzpatrick Institute of African Ornithology; South African National Biodiversity Institute Wright, Dale; BirdLife South Africa
Keywords:	drinking, community ecology, fynbos

SCHOLARONE[™] Manuscripts

2	
3	
4	
5	
6	
0	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	
22	
22 23 24 25	
24	
25	
26 27	
27	
28	
20	
29 30	
30	
31	
32	
33	
33 34	
34 35	
36	
36 37 38	
31	
38	
39	
40	
41	
42	
43	
44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
1111	

Hot birds drink more: patterns and drivers of water visitation in a fynbos bird community

- 4 Alan T.K. Lee^{1,2*}, Dale Wright³ and Phoebe Barnard^{1,2}
- ¹ Climate Change BioAdaptation, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa.
- ² Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3,
- 7 Rondebosch 7701, South Africa.
- 8 ³ BirdLife South Africa, Private Bag X5000, Parklands 2121, Johannesburg, South Africa
- 9 Key words: drinking, community ecology, conservation, fynbos, climate change, Cape Floristic
- 10 Region
- 11 * Correspondence: <u>alan.tk.lee@googlemail.com</u>
- 12 Running Title: Fynbos drinking birds
- 13 Words: 3488

14 Abstract

Water is essential for the survival and distribution of many species, but water supplies in many parts of the world are under threat due to climate change. In South Africa, various global climate-change models suggest a drier future for the winter rainfall regions with implications for survival of plant and animal species of the fynbos region. We documented bird species drinking at five natural water sources at a semi-arid fynbos site through time-lapse cameras to explore which birds are drinking when. We modelled the total numbers of birds observed drinking as a function of diet, mass and relative abundance and found that granivores were observed drinking most frequently, with the more common species most frequently recorded. Daily drinking rates at the species level for the ten most frequently observed species were generally best explained by daily temperature; with higher drinking rates on hotter days, as well as time since last rainfall. However, daily drinking patterns were poorly explained by diurnal temperature trends at the hourly level and we were unable to document sufficient predators to comment on the influence on predator avoidance or other heat mitigation strategies. Finally, we discuss the implications of our observations for the set of fynbos endemic passerines.

1	
2	
3	
4	
5	
6	
6 7	
8	
9	
9 10	
11	
12	
13	
14	
15	
11 12 13 14 15 16 17 18	
17	
18	
19	
20	
20 21 22 23	
21	
22	
22 23 24	
24	
25	
26	
27	
25 26 27 28 20	
23	
30	
31	
32	
33	
34	
35	
36	
37	
32 33 34 35 36 37 38 39	
39	
40	
41	
42	
43	
43 44	
44 45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
-	

30 Introduction

31	Water is essential for the survival and distribution of many species, but water supplies in many parts
32	of the world are under threat due to climate change. In South Africa global climate-change models
33	predicted that the Mediterranean climate of the Western Cape would become warmer and drier
34	(Midgley et al., 2002, Klausmeyer and Shaw, 2009), and evidence for this has now been reported
35	from weather stations in protected areas (van Wilgen et al., 2015). There is also concern over the
36	lowering of water tables due to ground water extraction, damming and land degradation, which may
37	be influencing above ground water availability in the Western Cape (Le Maitre et al., 2009).
38	Many bird species rely on evaporative water loss for maintaining body temperatures (Whittow,
39	1976, Williams and Tieleman, 2001). As temperatures increase, water stress will increase for most
40	species with possible lethal consequences (McKechnie and Wolf, 2009). Canaries and many other
41	species of birds, especially granivores, need to modify their diets (Carrillo et al., 2007) or supplement
42	their water requirements in order to maintain body water balance (MacMillen, 1990). Water
43	supplementation may be from dew or residual rainfall, but in arid environments birds often need to
44	drink from ephemeral streams or other water supplies (Skead, 1975). The importance of artificial
45	water sites aimed at supplying water for livestock has been noted for many species (Fisher et al.,
46	1972, Smit, 2013). However, some regions, such as mountain fynbos have low livestock carrying
47	capacity (Meissner et al., 1983), and decreased natural water availability will unlikely be offset by
48	man-made water resources in this biome.

The Cape Floristic Region (fynbos) is one of five Mediterranean-type biomes of the world. All five are considered global conservation priority areas owing to high plant species diversity and density (Myers et al., 2000). Fynbos is home to six endemic passerines and one turnicid. Of these, Cape Sugarbird, Orange-breasted Sunbird, Cape Siskin and Protea Seedeater have all been observed drinking water to some degree (Hockey et al., 2005). However, the reliance on water sources by the fynbos endemic bird species has not been quantified. These bird species generally start panting at

African Journal of Ecology

lower temperatures compared to non-endemics in the Fynbos and are considered more vulnerable to warming due to climate change (Milne, 2014, Lee and Barnard, 2015). Although the biome was palaeoclimatically cool and moist, it is becoming increasingly warm and dry (Huntley et al., 2013).

In this study in a dry, eastern part of the fynbos biome, we determine how temperature patterns

and rainfall events influence the numbers of birds drinking at selected drinking sites. We predict

granivores will be the most regular visitors to water sites given reliance on water poor food

resources. We also predict that the numbers of birds drinking will increase with increasing mean

daily temperature and with increasing time since last significant rainfall event as these correlate with

water stress. Finally, we predict that hourly drinking patterns will be correlated with periods of

- greatest water stress. The results have implications for the management and conservation of
- wetlands and water sources, as well as endemic birds across the fynbos.

	68	Methods
	69	This project was undertaken in and around the Blue Hill Nature Reserve (BHNR), Western Cape,
	70	South Africa. The BHNR is located in the fynbos biome at elevations between 1000 – 1500 masl, but
) 1	71	is close to the succulent-karoo biome boundary. It thus experiences an extreme range of
2 3	72	temperatures, from below freezing to >35 $^\circ$ C which allows comparisons of visitation to water points
2 3 4 5 6 7	73	over a range of temperatures.
6 7 3 9	74	We monitored five natural water sources from September 2014 to June 2015 using time-lapse
9)	75	photography with Cuddeback Attack cameras. Regularly visited drinking sites were identified during
1 2	76	previous field seasons. These included an annual rock-pond, sections of an ephemeral stream, a
5 4 5	77	perennial stream and rocky seep. Cameras were set roughly 1.5 – 3 metres from water sources to
2 3 4 5 6 7	78	capture the area used for drinking and to maximise resolution for bird identification. Cameras took
	79	photographs every 15 minutes automatically through the day from sunrise to sunset. We examined
3 9 0 1	80	34 367 photographs for the presence of birds in water or at the water edge, and excluded > 5000
2 3 4 5 6 7	81	photos taken at annual sites during times when no water was available. Identification rate was high:
4 5	82	only 3.9% (107 of 2705) of individuals could not be identified to species. Bird behaviour was scored
	83	as drinking only (beak near water), bathing (belly or more of bird submersed in water), vigilant (body
3 9 0	84	clear of water, not drinking) or other (preening, foraging, social behaviours).
1 2 3	85	
+ 5 6	86	Water visitation rates as a function of diet, mass and abundance

The total numbers of birds observed in proximity to the water through-out the study were used to create a relative index of water requirements for each species. We did not distinguish between behaviour types here as it is likely that some bathing birds also drank, and both of these behaviour categories were small compared to those scored as vigilant (Table 1). Mean bird mass was obtained from Hockey et al. (2005). We also used this source to categorize this community into preferred dietary guild: insectivore, granivore, nectarivore, frugivore, omnivore or raptor. For analysis we grouped omnivore and raptor due to low numbers in these categories in our final model. We used total capture rates from mist-netting (ringing) exercises at BHNR undertaken during 2014 and 2015 (effort = 70 days) as an index of relative abundance, as trap-rates correlates with abundance for small to medium sized birds at this study site (Lee et al., 2015). We used the MuMIn package (Barton, 2011) in R (R Core Team, 2015) to identify the best model by AIC based on a starting linear model using total visitation for each species as the dependent variable, and mass, diet and relative abundance together with all two-way interactions as independent variables.

101 The influence of weather on water visitation rates

For the ten species observed most frequently daily water visitation trends were examined in relation to weather data collected by an on-site weather station (Davis Vantage Vue, USA). We divided the total number of birds observed during the day at the drinking sites by the number of photos taken on that day to create an index of daily visitation rate. However, distribution of this index for all species displayed a negative exponential pattern weighted by zero, and so for analysis we simply used daily visitation observed and visitation not observed (visitation) as the dependent variable for regression. We modelled daily visitation rate as a function of mean-daily-temperature, number-of-days-since-last-rainfall and total-wind-run. We initially also considered humidity, but this variable was strongly negatively correlated with temperature (rs = -0.63, t = -13.3, p < 0.001, df = 268) and positively correlated with rainfall (rs = 0.34, t = 5.9, p < 0.001). Number of days since rain was also positively correlated with temperature due to low rainfall over the hottest months (rs = 0.37, t = 6.6, p < 0.001), but we include both variables to determine the larger effect and explore interactions. As visitation differed between sites and was temporally autocorrelated for all species, we conduct our modelling using Markov chain Monte Carlo (MCMC) Bayesian methods implemented in the MCMCglmm R package (Hadfield, 2010) using site as a random effect. We explored various priors,

African Journal of Ecology

2		
3	117	but found the best prior for the categorical family modelling was nu and variance = 1 for fixed effects
4 5 6	118	and 1 and 0.002 for the random effect. We used deviation information criteria (DIC) to select
7 8	119	between models and examined trace plots for autocorrelation. In all cases we increased default
9 10	120	burn-in (30 000) and number of iterations (130 000) as these provided acceptable trace plots based
11 12	121	on a thinning value of 50.
13 14 15 16	122	
17 18 19	123	Daily temporal visitation patterns
20 21	124	For 12 of the most commonly observed species we calculated the total number of individuals
22 23 24	125	recorded for each hour interval and tested correlations of visitation with mean hourly temperature
24 25 26	126	for the study period using Spearman's ranked correlation tests. We recorded the presence of
27 28	127	potential predators and other mammals. However, data were too sparse to conduct meaningful
29 30	128	analysis on predator impact on visitation by drinking birds.
31 32 33 34	129	
35 36	130	Results
37 38 39	131	Water visitation rates as a function of diet, mass and abundance
40 41 42	132	Fifty three species were recorded at drinking sites, representing 36% of the estimated 146 species
43 44	133	from the study area (Lee et al., 2015) and 91% of the species mist-netted locally for the study period
45 46	134	(Table 1). Bird numbers at drinking sites were best explained by diet and abundance, where the only
47 48 40	135	significant predictor in the best model was the interaction between the granivore dietary guild and
49 50 51	136	abundance (Figure 2, Table 2). While Cape Weaver represented the top visitor in terms of individuals
52 53	137	recorded, all records bar one were from one drinking site: the perennial stream which was also the
54 55	138	site closest to a reed-bed with a breeding colony of this species. By contrast the second most
56 57	139	recorded species, Cape Bunting, was observed at all sites. The three most abundant species from

 mist-netting at the study site were Orange-Breasted Sunbird, Cape Sugarbird and Malachite Sunbird, which were all observed at water, but visitation rates were low given abundance for these nectarivores. Likewise, the most common insectivores, Familiar Chat and Karoo Prinia, were rarely observed as was the omnivorous Cape White-eye. The ratio of total visitation/abundance was highest for Cape Canary, Cape Wagtail, Common Waxbill and Cape Turtle Dove. The most common insectivore observed was the Cape Wagtail, a species known to forage in association with water courses. The only raptor observed was a Jackal Buzzard on one occasion. A surprising result was the consistently small group sizes recorded at the drinking sites with none of the common species recorded in mean group sizes greater than two (Table 1). The largest flock observed at a drinking site was for Cape Siskin, with 25 birds in the photo frame. While total flock size may be under-represented in the photo frame, the mean group sizes utilizing water at a given instant presented here are certainly representative of drinking habits for these species at this location. There may be temporal partitioning of the water resources over the drinking sessions for those species more commonly considered social or flocking species; including Cape Weaver, Cape Siskin, Common Waxbill and Cape Canary; but the photo intervals used in this study could not capture this aspect of the birds' behaviour. *The influence of weather on water visitation rates*

Mean daily temperature was either the only or the most significant predictor variable of weather variables considered for the top 10 most frequently observed species (Table 3), with increasing visitation with increasing temperature in all cases. Time since rain was a significant positive predictor of visitation for six of these species, with the interaction between mean daily temperature and time since rain a significant predictor for a further six species. This interaction was consistently negative and interpreted as increased visitation at lower temperatures with increasing time since rain. Wind

African Journal of Ecology

164	was a non-significant predictor in the best model for only one species, Cape Bunting, with all other
165	models performing better excluding this variable.
166	
167	Daily temporal patterns of drinking
168	Granivores generally drank throughout the day, exceptions being Protea Seedeater and Yellow
169	Canary which showed peak numbers prior to midday (Figure 3). Orange-breasted Sunbird also visited
170	relatively early in the morning, surprisingly given temperatures peaked later and that temperature is
171	a predictor of drinking for this species. Cape Bulbul and Cape Turtle Dove showed a bimodal
172	visitation pattern with a lull during the middle of the day. Only four of the top 12 species showed
173	significant positive correlations between visitation and the mean of hourly temperature (Brimstone
174	Canary, Cape Weaver, Common Waxbill, Yellow Bishop; rs > 0.61, p < 0.03), suggesting other factors
175	influence daily patterns of visitation for the majority of species e.g. predator avoidance strategies.
176	However, records of predators were very low: the known bird predator, Cape Grey Mongoose, was
177	observed on 10 occasions and Honey Badger once. Rock Hyrax, by comparison, were observed on 9
178	occasions. Jackal Buzzard was the only raptor observed. No other predators (felines, snakes) were
179	observed.
180	
181	Discussion
182	Which birds are visiting drinking sites?
183	Drinking was commonly observed among the set of common species at this fynbos site, but drinking
184	rates were low. Total visitation among this community of bird species was best described by
185	abundance within the set of seed-eating species. This community of birds thus conforms to global
186	trends of water reliance by birds, which are normally dominated by granivores (Okahisa et al., 2015).

187	By contrast the most common species at this site as determined by mist-netting were the
188	nectarivores. Visitation to water for the purpose of drinking by any nectarivores is unexpected given
189	the high liquid content of their diets (e.g. Mbatha et al., 2002). Insectivores, despite representing a
190	large proportion of the bird community, were rarely observed at drinking sites. It is generally
191	expected that insectivores obtain sufficient moisture through their arthropod rich diet
192	(Bartholomew and Cade, 1963). Generally, visitation across this fynbos bird community could be
193	described as low compared to drinking described from water points in desert environments (Abdu,
194	2015), although the breadth of species observed was higher than we expected: all the fynbos
195	endemic bird species with the exception of Victorin's Warbler were observed either drinking or
196	bathing.
197	There is remarkably little literature on the reasons for visitation of terrestrial bird species to water
198	sources. While drinking is well documented for some arid zone regions (Fisher et al., 1972, Smyth
199	and Coulombe, 1971, Bartholomew and Cade, 1963), most frequently observed species in this study
200	both drank and bathed. Bathing sites are used by a variety of bird species for feather maintenance
201	and pest control (Slessers, 1970, Verbeek, 1991). Both drinking and bathing will allow cooling and
202	hence daily visitation was best explained by temperature. It is likely that bathing is used as an
203	additional body temperature regulation technique, although we cannot rule out that pest or parasite
204	activity is also correlated with temperature.
205	Future studies should focus on reasons for differences between site selection, as visitation rates
206	were dramatically different for the five sites considered here. Low sample size precluded analysis of
207	site characteristics favoured by the fynbos bird species, but the perennial stream had highest
208	visitation rates, followed by the isolated ephemeral site and then other ephemeral stream sites. If
209	access to reliable water sources is required for the persistence of local bird populations for some

210 species, then drying trends across the fynbos are cause for concern.

The influence of weather on water visitation rates

213	Temperature was the most important variable explaining daily visitation of birds to water sites at
214	this fynbos site, with visitation increasing with increasing mean daily temperature. Laboratory
215	studies have shown a positive correlation between increasing temperature and an increase in water
216	consumption for a variety of passerines (Bartholomew and Dawson, 1953, Bartholomew and Cade,
217	1956, Williams and Koenig, 1980). Field observation studies also found a nonsignificant positive
218	correlation between drinking visits and maximum temperature in Monterey County, California
219	(Williams and Koenig, 1980). In the later study, individual birds were observed to move 0.8 – 2.5km
220	in order to access spring water. Some species have been shown to use behavioural strategies (e.g.
221	use of rock shade, switching diet to green vegetation or insects) while others are physiologically well
222	adapted to dealing with water stress by modifying the water content in their excreta (Smyth and
223	Bartholomew, 1966).
224	
225	The correlation between time-since-rain and temperature may mask the influence that time-since-
226	rain has on visitation to water sources. However, for those species where this interaction was
227	identified as significant, visitation increased with time-since-rain especially for lower temperatures.
228	We do not expect that water requirements are reduced with rainfall events, but rather that
229	alternative and/or more convenient water sources become available in the form of ephemeral
230	puddles for example. Evaporative heat dissipation is affected by the humidity of the atmosphere
231	(Lasiewski et al., 1966): high humidity reduces the efficiency of heat lost through evaporation; but
232	we did not observe increased visitation with increased humidity. Lower humidity at increasing
233	temperatures during this study may have facilitated evaporative-water-loss as a cooling mechanism
234	at this study site.
235	

236 Daily temporal patterns of drinking

237	While daily visitation was best explained by mean daily temperature across the study period, this
238	pattern was not as clearly seen at the daily level, where a significant positive correlation between
239	daily temperature by hour and visitation was seen for four of twelve species. Some studies have
240	suggested that daily temporal patterns of visitation are determined by predation risk as the risk of
241	predation is high at isolated free-standing water surfaces because birds can be easily spotted by
242	their predators (Cade, 1965). Falcons and goshawks were frequently observed hunting at artificial
243	water points, mainly targeting doves in the Namib Desert (Cade 1965). Aside from aerial predators,
244	ground predators such as mongoose and snakes put birds drinking at risk (Lazarus and Symonds,
245	1992). Molokwu et al. (2010) suggest that the risk of predation had a stronger influence on foraging
246	bird behaviours than high temperatures within a west African savannah; and predation risk has been
247	attributed to highly synchronised drinking patters of sandgrouse (Berry et al., 2001). That pattern
248	was little supported at this fynbos site using our study technique, where predator presence was low
249	but where drinking was observed throughout the day for most granivores, suggesting low predation
250	pressure. For Orange-breasted Sunbird and Protea Seedeater, with pre-midday drinking peaks and
251	high levels of bathing these patterns match those observed elsewhere associated with feather
252	maintenance and preening (Murphy et al., 2011).
253	Drinking in large groups is of advantage as individual vigilance levels can be decreased (Roberts,
254	1996), yet mean group size for all species was surprisingly low albeit with high levels of individual
255	vigilance observed overall. It is likely that at this site that visitation for most the most frequent
256	species are based on a water-needs basis with greater visitation during periods of greatest water
257	stress, rather than being predator-avoidance mediated. These patterns may be confounded on an
258	intra-day level where possible other heat avoidance strategies are employed at certain times of the
259	day e.g. shade seeking (du Plessis et al., 2012).
260	

261 Conservation implications for fynbos birds

African Journal of Ecology

262	The impact of extreme weather events on bird populations is of growing concern to conservation
263	biologists. Heat waves have been attributed to mortalities for multiple bird species in different
264	environments (Saunders et al., 2011, McKechnie and Wolf, 2009). Extreme heat waves might disrupt
265	the apparent temporal partitioning of access to the resources, as exhibited by granivores we
266	observed; leading to higher flocking and reduced access to water for individual birds. Furthermore
267	extreme heat events may lead to behaviour changes including retiring to shaded areas, in turn
268	reducing the ability to forage and drink, with knock on physiological consequences (Saunders et al.,
269	2011).
270	Climate change models suggest drying of the fynbos (Klausmeyer and Shaw, 2009), and whilst bird
271	populations can recover from short-term or single drought events (George, Fowler et al. 1992),
272	longer periods or sequential drought events may lead to long-term reductions in productivity and
273	bird population declines of water dependent species. The distribution of some bird species may also
274	be limited by access to surface water (Williams, Koenig 1980).
275	There are two fynbos endemic granivores: Cape Siskin and Protea Seedeater. While these did not
276	drink more than expected by our model considering diet and abundance, these species are still
277	habitat restricted and are thus especially vulnerable to changes in water availability under drier
278	climate scenarios. While we were not able to preclude that the endemic nectarivores Orange-
279	breasted Sunbird and Cape Sugarbird drank water, their behaviour seemed to be dominated by a
280	preference for bathing. Given the restricted range of all these species coupled with decreasing
281	winter rainfall, it is foreseeable that the extra burden placed by water stress will be detrimental to
282	populations of these birds, especially the granivorous species.
283	

285	Acknowledgements
286	Brian Haslett, Ivan Blackett and Augustin Calas helped digitize information from photographs on a
287	voluntary basis. BirdLife South Africa sponsored two camera traps. This study was part-funded
288	through a Percy Fitzpatrick Institute grant to Alan Lee and supported by grant IFR2011041800032 to
289	PB from the National Research Foundation of South Africa. The NRF accepts no liability for opinions,
290	findings and conclusions or recommendations expressed in this publication. Susie Cunningham
291	commented on an early draft.
292	References
293	
294	ABDU, S. (2015) Does the availability of shade limit use of waterholes by desert birds? In:
295	Biological Sciences. University of Cape Town, Cape Town.
296	BARTHOLOMEW, G. A. & CADE, T. J. (1956) Water consumption of house finches. Condor,
297	58, 406-412.
298	BARTHOLOMEW, G. A. & CADE, T. J. (1963) The water economy of land birds. The Auk, 80,
299	504-539.
300	BARTHOLOMEW, G. A. & DAWSON, W. R. (1953) Respiratory water loss in some birds of
301	southwestern United States. Physiological Zoology, 26, 162-166.
302	BARTON, K. (2011) MuMIn: Multi-model inference. R package version 1.12.1. In: Vienna,
303	Austria: R Foundation for Statistical Computing. See <u>http://CRAN</u> . R-project.
304	org/package= MuMIn.
305	BERRY, H., FOX, V. & BERRY, P. (2001) Synchrony of drinking in Double-banded Sandgrouse,
306	Pterocles bicinctus, at Etosha National Park, Namibia. Ostrich-Journal of African
307	Ornithology, 72, 109-113.

2 3 4	308	CADE, T. J. (1965) Relations between raptors and columbiform birds at a desert water hole.
5 6	309	The Wilson Bulletin, 340-345.
7 8	310	CARRILLO, C. M., MORENO, E., VALERA, F. & BARBOSA, A. (2007) Seed selection by the
9 10 11	311	trumpeter finch, Bucanetes githagineus. What currency does this arid-land species
12 13	312	value? In: Annales Zoologici Fennici. Helsinki: Suomen Biologian Seura Vanamo,
14 15 16	313	1964
17 18	314	DU PLESSIS, K. L., MARTIN, R. O., HOCKEY, P. A. R., CUNNINGHAM, S. J. & RIDLEY, A. R.
19 20	315	(2012) The costs of keeping cool in a warming world: implications of high
21 22 23	316	temperatures for foraging, thermoregulation and body condition of an arid-zone
24 25	317	bird. <i>Global Change Biology,</i> 18, 3063-3070.
26 27	318	FISHER, C. D., LINDGREN, E. & DAWSON, W. R. (1972) Drinking patterns and behavior of
28 29 30	319	Australian desert birds in relation to their ecology and abundance. Condor, 111-136.
31 32	320	HADFIELD, J. D. (2010) MCMC methods for multi-response generalized linear mixed models:
33 34	321	the MCMCgImm R package. Journal of Statistical Software, 33 , 1-22.
35 36 37	322	HOCKEY, P., DEAN, W. R. J. & RYAN, P. (Eds.) (2005) <i>Roberts birds of southern Africa,</i>
38 39	323	Trustees of the John Voelcker Bird Book Fund, Johannesburg.
40 41	324	HUNTLEY, B., ALLEN, J. R. M., BARNARD, P., COLLINGHAM, Y. C. & HOLLIDAY, P. R. (2013)
42 43 44	325	Species distribution models indicate contrasting late-Quaternary histories for
45 46	326	Southern and Northern Hemisphere bird species. Global Ecology and Biogeography,
47 48 40	327	22, 277-288.
49 50 51	328	KLAUSMEYER, K. R. & SHAW, M. R. (2009) Climate Change, Habitat Loss, Protected Areas
52 53	329	and the Climate Adaptation Potential of Species in Mediterranean Ecosystems
54 55 56 57 58 59	330	Worldwide. <i>PLoS ONE, 4,</i> e6392.

331	LASIEWSKI, R. C., ACOSTA, A. L. & BERNSTEIN, M. H. (1966) Evaporative water loss in birds—
332	I. Characteristics of the open flow method of determination, and their relation to
333	estimates of thermoregulatory ability. Comparative Biochemistry and Physiology, 19,
334	445-457.
335	LAZARUS, J. & SYMONDS, M. (1992) Contrasting effects of protective and obstructive cover
336	on avian vigilance. Animal Behaviour, 43, 519-521.
337	LE MAITRE, D., COLVIN, C. & MAHERRY, A. (2009) Water resources in the Klein Karoo: the
338	challenge of sustainable development in a water-scarce area. South African Journal
339	of Science, 105, 39-48.
340	LEE, A. T., BARNARD, P. & HOCKEY, P. A. (2015) Population metrics for fynbos birds, South
341	Africa: densities, and detection and capture rates from a Mediterranean-type
342	ecosystem. Ostrich, 1-9.
343	LEE, A. T. K. & BARNARD, P. (2015) Endemic birds of the Fynbos biome: a conservation
344	assessment and impacts of climate change. Bird Conservation International,
345	doi:10.1017/S0959270914000537, 1-17.
346	MACMILLEN, R. E. (1990) Water economy of granivorous birds: a predictive model. Condor,
347	379-392.
348	MBATHA, K., DOWNS, C. & PENNING, M. (2002) Nectar passage and gut morphology in the
349	Malachite Sunbird and the Black-capped Lory: implications for feeding in
350	nectarivores. Ostrich, 73, 138-142.
351	MCKECHNIE, A. E. & WOLF, B. O. (2009) Climate change increases the likelihood of
352	catastrophic avian mortality events during extreme heat waves. Biology Letters,
353	rsbl20090702.

3 4	354	MEISSNER, H. H., HOFMEYER, H., VAN RENSBERG, W. & JP, P. (1983) Classification of
5 6	355	livestock for realistic prediction of substitution values in terms of a biologically
7 8 9	356	defined Large Stock Unit. Republic of South Africa, Dept. of Agriculture, Pretoria.
10 11	357	MIDGLEY, G., HANNAH, L., MILLAR, D., RUTHERFORD, M. & POWRIE, L. (2002) Assessing the
12 13	358	vulnerability of species richness to anthropogenic climate change in a biodiversity
14 15 16	359	hotspot. Global Ecology and Biogeography, 11, 445-451.
17 18	360	MILNE, R. (2014) Physiological tolerances of high temperatures in Fynbos birds: implications
19 20	361	for climate change. In: Percy FitzPatrick Institute of African Ornithology. University of
21 22 23	362	Cape Town.
24 25	363	MOLOKWU, M. N., NILSSON, JÅ., OTTOSSON, U. & OLSSON, O. (2010) Effects of season,
26 27	364	water and predation risk on patch use by birds on the African savannah. Oecologia,
28 29 30	365	164, 637-645.
31 32	366	MURPHY, S. M., BRAUN, J. V. & MILLAM, J. R. (2011) Bathing behavior of captive orange-
33 34 35	367	winged Amazon parrots (Amazona amazonica). Applied Animal Behaviour Science,
36 37	368	132, 200-210.
38 39	369	MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. B. & KENT, J.
40 41 42	370	(2000) Biodiversity hotspots for conservation priorities. <i>Nature</i> , 403 , 853.
43 44	371	OKAHISA, Y., NAKAHARA, T., SATO, N. J., THEUERKAUF, J. & UEDA, K. (2015) Puddle use by
45 46	372	New Caledonian rainforest birds. Ornithological Science, 14, 41-45.
47 48 49	373	R CORE TEAM (2015) R: A language and environment for statistical computing. R Foundation
50 51	374	for Statistical Computing, Vienna, Austria. URL <u>http://www.R-project.org/</u> .
52 53	375	ROBERTS, G. (1996) Why individual vigilance declines as group size increases. Animal
54 55 56 57 58 59	376	behaviour, 51, 1077-1086.

377	SAUNDERS, D. A., MAWSON, P. & DAWSON, R. (2011) The impact of two extreme weather
378	events and other causes of death on Carnaby's Black Cockatoo: a promise of things
379	to come for a threatened species? <i>Pacific Conservation Biology</i> , 17 , 141-148.
380	SKEAD, D. M. (1975) Drinking habits of birds in the central Transvaal bushveld. Ostrich, 46,
381	139-146.
382	SLESSERS, M. (1970) Bathing behavior of land birds. The Auk, 91-99.
383	SMIT, B. (2013) Taking the heat: integrating behavioural and physiological variables to
384	predict avian responses to climate change in the Kalahari Desert. University of
385	Pretoria, Pretoria.
386	SMYTH, M. & BARTHOLOMEW, G. A. (1966) The water economy of the Black-throated
387	Sparrow and the Rock Wren. <i>Condor</i> , 447-458.
388	SMYTH, M. & COULOMBE, H. N. (1971) Notes on the use of desert springs by birds in
389	California. <i>Condor</i> , 240-243.
390	VAN WILGEN, N. J., GOODALL, V., HOLNESS, S., CHOWN, S. L. & MCGEOCH, M. A. (2015)
391	Rising temperatures and changing rainfall patterns in South Africa's national parks.
392	International Journal of Climatology.
393	VERBEEK, N. (1991) Comparative bathing behavior in some Australian birds. Journal of Field
394	Ornithology, 62, 386-389.
395	WHITTOW, G. (1976) Regulation of body temperature. In: Avian physiology. Springer.
396	WILLIAMS, J. B. & TIELEMAN, B. I. (2001) Physiological ecology and behavior of desert birds.
397	In: Current ornithology. Springer.
398	WILLIAMS, P. L. & KOENIG, W. D. (1980) Water dependence of birds in a temperate oak
399	woodland. The Auk, 97, 339-350.

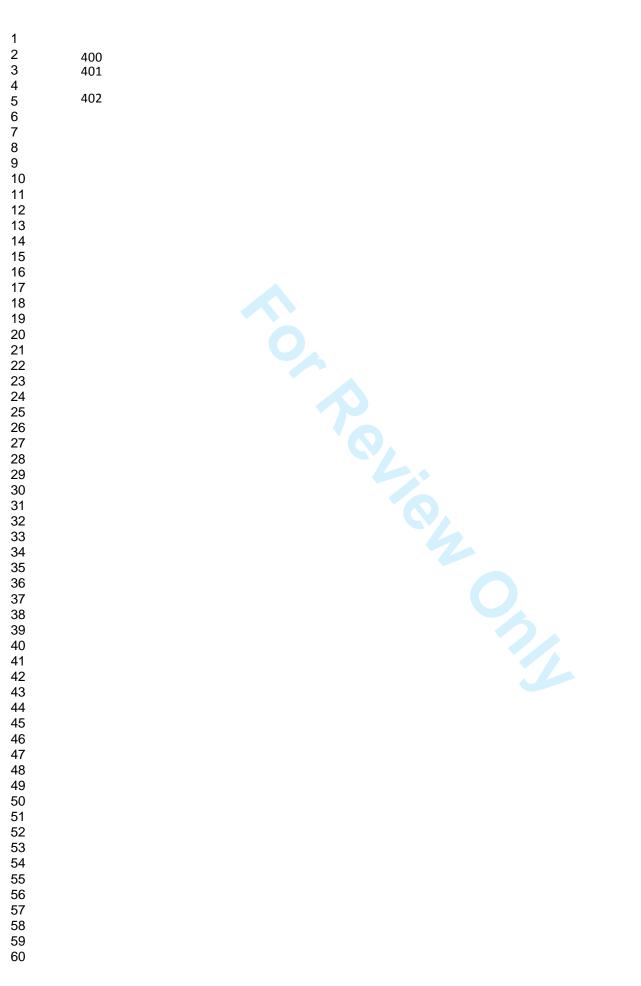


Table 1: A table of the species recorded at the drinking sites at Blue Hill Nature Reserve ordered by most frequently recorded. Species endemic to the fynbos biome are indicated with *. Visitation is the total number of birds recorded from all photos during the study. Diet represents major dietary guild: gran – granivore, insec – insectivore, nect – nectarivore, frug – frugivore and omni – omnivore. Trap rate are the total number of birds captured during 2014/2015 at the study site. Main behaviour categories are: drinking, bathing, vigilant and other. Where drinking totals are higher than bathing totals, these values are highlighted in **bold.** Grp size: mean group size ± standard deviation of numbers of birds per photo where the species was present.

--1 and other. V. Jold. Grp size: m. che species was prese

African Journal of Ecology

Name	Diet	Visitation	Trap rate	Drinking	Bathing	Vigilant	Other	Grp size
Cape Weaver, Ploceus capensis (Linnaeus, 1766)	gran	351	25	24	162	147	18	1.4 ± 0.9
Cape Bunting, Emberiza capensis (Linnaeus, 1766)	gran	313	26	48	14	234	17	1.1 ± 0.3
Yellow Bishop, Euplectes capensis (Linnaeus, 1766)	gran	300	48	18	89	180	13	1.2 ± 0.6
Cape Canary, Serinus canicollis (Swainson, 1838)	gran	212	5	37	17	143	15	1.3 ± 0.9
Common Waxbill, Estrilda astrild (Linnaeus, 1758)	gran	181	5	31	40	74	36	1.9 ± 1.9
Protea Seedeater*, Serinus leucopterus (Sharpe, 1871)	gran	154	11	14	30	103	7	1.1 ± 0.4
Cape Siskin*, Serinus totta (Sparrman, 1786)	gran	136	15	20	21	85	10	1.5 ± 2.6
Cape Turtle Dove, Streptopelia capicola (Sundevall, 1857)	gran	103	3	10	6	71	16	1.1 ± 0.3
Yellow Canary, Serinus flaviventris (Swainson, 1828)	gran	93	13	10	11	70	2	1.2 ± 0.4
Orange-breasted Sunbird*, Nectarinia violacea (Linnaeus, 1766)	nect	88	118	5	20	51	12	1.2 ± 0.6
Cape Wagtail, Motacilla capensis (Linnaeus, 1766)	insec	81	2	1	4	44	32	1.1 ± 0.4
Brimstone Canary, Serinus sulphuratus (Linnaeus, 1766)	gran	60	7	12	4	42	2	1.1 ± 0.3
Cape Bulbul, Pycnonotus capensis (Linnaeus, 1766)	frug	57	35	4	10	40	3	1.2 ± 0.4
Cape Robin-Chat, Cossypha caffra (Linnaeus, 1771)	insec	49	38	5	7	34	3	1 ± 0.1
Cape Spurfowl, Pternistis capensis (Gmelin, 1789)	gran	41	0	16	0	10	15	1.3 ± 0.5

Red-winged Starling, Onychognathus morio (Linnaeus, 1766)	frug	40	7	4	12	22	2
Southern Double-collared Sunbird, Nectarinia chalybea (Linnaeus, 1766)	nect	38	86	4	11	19	4
Red-necked Spurfowl, Pternistis afer (Müller, 1776)	gran	33	1	10	0	8	15
Common Starling, Sturnus vulgaris (Linnaeus, 1758)	omni	31	1	1	14	16	0
Bokmakierie, Telophorus zeylonus (Linnaeus, 1766)	insec	22	7	1	8	10	3
Olive Thrush, Turdus olivaceus (Linnaeus, 1766)	insec	21	4	4	3	12	2
Malachite Sunbird, Nectarinia famosa (Linnaeus, 1766)	nect	19	95	0	11	6	2
Common Fiscal, Lanius collaris (Linnaeus, 1766)	insec	18	17	0	9	9	0
Speckled Mousebird, Colius striatus (Gmelin, 1789)	frug	18	41	6	6	6	0
Streaky-headed Seedeater, Serinus gularis (Smith, 1836)	gran	18	4	1	5	12	0
Cape Sugarbird*, Promerops cafer (Linnaeus, 1758)	nect	16	146	0	4	7	5
Cinnamon-breasted Bunting, Emberiza tahapisi (Smith, 1836)	gran	16	1	5	0	10	1
Speckled Pigeon, Columba guinea (Linnaeus, 1758)	gran	13	1	3	1	9	0
Fiscal Flycatcher, Sigelus silens (Shaw, 1809)	insec	11	5	0	3	7	1
Black-headed Heron, Ardea melanocephala (Vigors & Children, 1826)	omni	6		0	0	3	3
Fork-tailed Drongo, Dicrurus adsimilis (Bechstein, 1794)	insec	6	1	0	1	2	3
Karoo Prinia, Prinia maculosa (Boddaert, 1783)	insec	6	26	0	2	2	2
Cape White-eye, Zosterops virens (Sundevall, 1850)	omni	5	87	1	0	4	0
Long-billed Pipit, Anthus similis (Jerdon, 1840)	insec	5	3	0	0	4	1
Familiar Chat, Cercomela familiaris (Wilkes, 1817)	insec	4	7	0	0	4	0

African Journal of Ecology

	Neddicky, Cisticola fulvicapilla (Vieillot, 1817)	insec	4	7	0	3	1	0 1±0
	African Stonechat, Saxicola torquatus (Linnaeus, 1766)	insec	3	5	0	1	2	0 1±0
	Cape Grassbird, Sphenoeacus afer (Gmelin, 1789)	insec	3	5	0	2	1	0 1±0
	Grey-winged Francolin, Scleroptila africanus (Stephens, 1819)	gran	3	0	1	0	0	2 3±0
	Ground Woodpecker, Geocolaptes olivaceus (Gmelin, 1788)	insec	3	0	1	1	1	0 1.5 ± 0.5
	Cape Rock-Thrush, Monticola rupestris (Vieillot, 1818)	insec	2	10	0	1	1	0 1±0
	Cape Rock-jumper*, Chaetops frenatus (Temminck, 1826)	insec	2	15	0	1	1	0 2 ± 0
	Diederik Cuckoo, Chrysococcyx caprius (Boddaert, 1783)	omni	2	0	0	1	1	0 1±0
	Red-faced Mousebird, Urocolius indicus (Latham, 1790)	frug	2	0	2	0	0	0 2 ± 0
	Black-headed Canary, Serinus alario (Linnaeus, 1758)	gran	1	0	0	0	1	0 1±0
	Cape Batis, Batis capensis (Linnaeus, 1766)	insec	1	0	0	0	0	1 1±0
	Greater Striped-Swallow, Hirundo cucullata (Boddaert, 1783)	insec	1	1	0	0	0	1 1±0
	Hadeda Ibis, Bostrychia hagedash (Latham, 1790)	insec	1		0	0	1	0 1±0
	Jackal Buzzard, Buteo rufofuscus (Forster, 1798)	raptor	1	0	0	1	0	0 1±0
	Pin-tailed Whydah, Vidua macroura (Pallas, 1764)	gran	1	0	0	0	1	0 1±0
	Rock Martin, Hirundo fuligula (Lichtenstein, 1842)	insec	1	1	0	0	1	0 1±0
	Southern Boubou, Laniarius ferrugineus (Gmelin, 1788)	insec	1	1	0	0	1	0 1±0
	Southern Masked-Weaver, Ploceus velatus (Vieillot, 1819)	gran	1	1	0	0	1	0 1±0
414								

African Journal of Ecology

415 Table 2: Best model results of total visitation as a function of dietary guild, mass and relat	tive
--	------

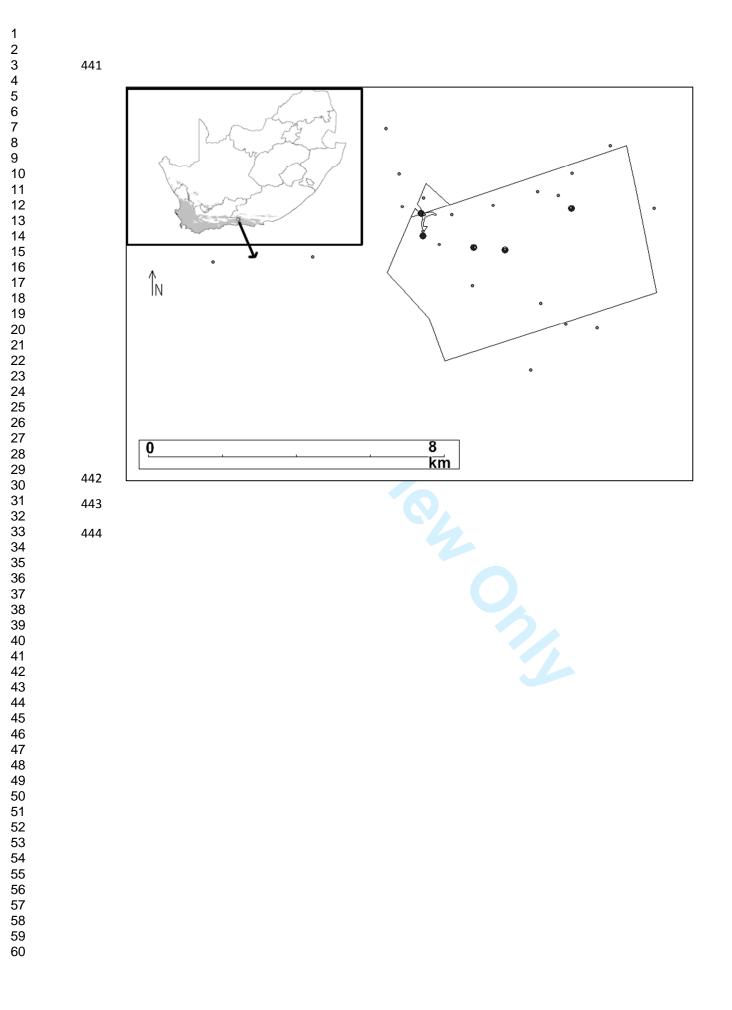
abundance from trapping rates (abundance) at drinking sites on Blue Hill Nature Reserve. Residual

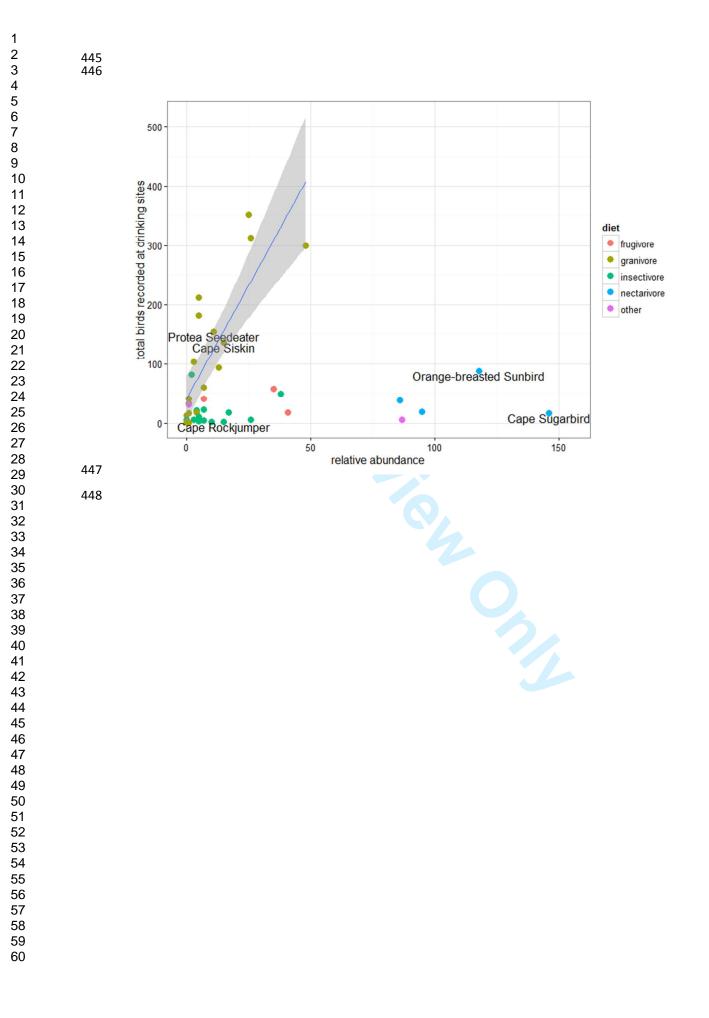
standard error: 46 on 42 degrees of freedom; adjusted R-squared: 0.69. Significant predictor results

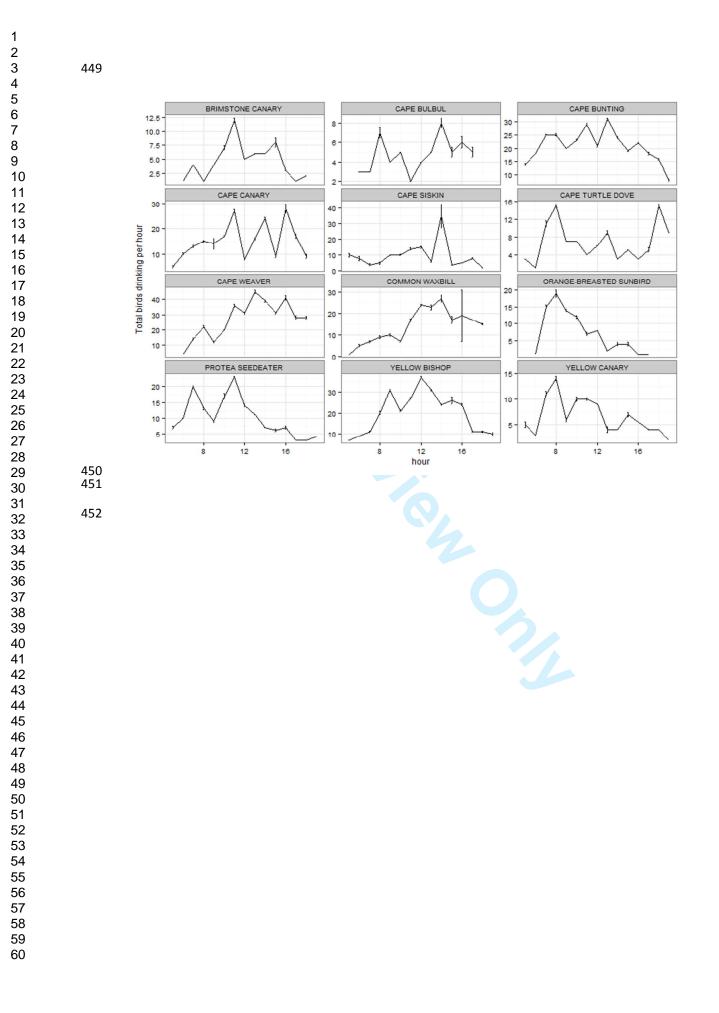
(p < 0.001) are highlighted in bold.

e Error 35.749 38.058 37.964 118.577 44.658 44.658 1.315 1.579 1.696 1.649 4.1.452	t value 0.543 0.544 -0.322 0.227 -0.182 0.361 4.539 0.081 -0.321 -0.375	Pr(> t) 0.590 0.590 0.749 0.821 0.857 0.720 0.000 0.936 0.750 0.710	
5 38.058 5 37.964 5 118.577 3 44.658 5 1.315 5 1.579 7 1.696 0 1.649	0.544 -0.322 0.227 -0.182 0.361 4.539 0.081 -0.321	0.590 0.749 0.821 0.857 0.720 0.000 0.936 0.750	
5 37.964 5 118.577 3 44.658 5 1.315 5 1.579 7 1.696 0 1.649	-0.322 0.227 -0.182 0.361 4.539 0.081 -0.321	0.749 0.821 0.857 0.720 0.000 0.936 0.750	
5 118.577 3 44.658 5 1.315 5 1.579 7 1.696 0 1.649	0.227 -0.182 0.361 4.539 0.081 -0.321	0.821 0.857 0.720 0.000 0.936 0.750	
3 44.658 5 1.315 5 1.579 7 1.696 0 1.649	-0.182 0.361 4.539 0.081 -0.321	0.857 0.720 0.000 0.936 0.750	
51.31551.57971.69601.649	0.361 4.539 0.081 -0.321	0.720 0.000 0.936 0.750	
5 1.579 7 1.696 0 1.649	4.539 0.081 -0.321	0.000 0.936 0.750	
7 1.696) 1.649	0.081 -0.321	0.936 0.750	
) 1.649	-0.321	0.750	
1.452	-0.375	0.710	

Table 3: Model summary table for best models for visitation of bird species at drinking sites with
weather variables as explanatory variables. Post.mean = posterior mean with lower and upper
confidence intervals (u & I 95% CI); eff.samp = effective sample size; pMCMC = Monte Carlo Markov
Chain probability; DIC = Deviation Information Criteria; dDIC = difference between best model and
starting model including interactions. Significant predictor variables (pMCMC < 0.05) are highlighted
in **bold.** Temp = mean daily temperature; T since rain = time in days since last rainfall event.


	<u>Fixed</u>		<u>l- 95%</u>	<u>u-95%</u>		
<u>Species</u>	Effects	<u>post.mean</u>	<u>CI</u>	<u>CI</u>	<u>eff.samp</u>	<u>pMCMC</u>
Cape Weaver	Intercept	-21.7	-46	-1.6	78.2	0.039
DIC: 218	Temp	0.28	0.14	0.42	439	<0.001
	T since					
dDIC: 0	rain	-0.1	-0.7	0.44	296	0.78
	Wind	-0.01	-0.02	0.01	539	0.31
	Temp:time	0.01	-0.02	0.05	248	0.44
Cape Bunting	Intercept	-8.5	-12.1	-5.7	798	0.002
DIC: 319	Temp	0.28	0.19	0.37	465	<0.001
dDIC: 1.82	Wind	0.01	-0.003	0.02	730	0.15
Yellow Bishop	Intercept	-13.8	-21	-8	428	0.001
DIC: 231.7	Temp	0.53	0.37	0.69	205.8	<0.001
	T since					
dDIC: 0.5	rain	0.68	0.18	1.15	378	0.002
	Temp:time	-0.04	-0.06	-0.01	430	0.002
Cape Canary	Intercept	-6.7	-8.8	-4.3	836	0.001
DIC: 380.2	Temp	0.24	0.14	0.34	589	<0.001
	T since					
dDIC: 1.5	rain	0.31	-0.06	0.66	887	0.1
	Temp:time	-0.02	-0.03	0.003	847	0.08
Common Waxbill	Intercept	-9.8	-13.2	-6.2	464	<0.001
DIC: 283.7	Temp	0.37	0.25	0.51	437	<0.001
	T since					
dDIC: 0.88	rain	0.5	0.04	0.9	598	0.02
	Temp:time	-0.03	-0.05	-0.01	566	0.02
Protea Seedeater	Intercept	-8.5	-14.7	-2.7	262	0.01
DIC: 306.8	Temp	0.21	0.11	0.32	587	<0.001
	T since					
dDIC: 1.3	rain	0.34	0.02	0.67	979	0.04
	Temp:time	-0.01	-0.03	0.004	919	0.14
Cape Siskin	Intercept	-11.8	-20.8	-4	120	0.01
DIC: 217.6	Temp	0.28	0.13	0.42	338	<0.001
	T since					
dDIC: 1.87	rain	0.74	0.34	1.19	576	0.001
	Temp:time	-0.03	-0.06	-0.01	513	0.003
Cape Turtle Dove	Intercept	-6.6	-10.3	-3.07	1103	0.007
DIC: 353	Temp	0.14	0.04	0.22	859	0.001
	T since	0.21	0.01			
dDIC: 0	rain	0.01	-0.34	0.34	977	0.93
	Wind	0.003	-0.008	0.016	814	0.6


African Journal of Ecology


2								
3			Temp:time	0.004	-0.013	0.021	1041	0.59
4		Yellow Canary	Intercept	-13.8	-20.6	-7.8	284	0.002
5		DIC: 155	Temp	0.36	0.17	0.53	179	<0.001
6		DIG. 155	T since	0.50	0.17	0.55	175	401001
7		dDIC: 0	rain	0.66	0.15	1.21	300	0.014
8		ubic. 0						
9			Wind	0.02	-0.001	0.03	418	0.087
10			Temp:time	-0.3	-0.06	-0.002	299	0.032
11		Orange-breasted						
12		Sunbird	Intercept	-17.2	-26.2	-9.9	49	0.003
13		DIC: 135	Temp	0.6	0.34	0.86	71	<0.001
14 15			T since					
16		dDIC: 0.5	rain	1.23	0.61	1.97	105	<0.001
17			Temp:time	-0.06	-0.1	-0.03	118	<0.001
18	427							
19								
20	428							
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39 40								
40 41								
41								
42								
44								
45								
46								
47								
48								
49								
50								
51								
52								
53								

1 2		
3	429	
4 5 6 7 8 9	430 431 432 433	Figure 1: Map of study site including drinking and mist-netting sites. Inset shows South Africa with provincial boundaries and the Cape Floristic Region (fynbos) in grey. Mist-netting locations are indicated by small, grey dots, with camera locations as larger, black circles. The rectangular outline indicates the boundaries of the Blue Hill Nature Reserve.
10 11 12 13 14	434 435 436 437	Figure 2: Visitation of birds at BHNR to drinking sites plotted against relative abundance (trapping rates at mist nets). Dietary guilds are indicated as colours. Labelled species are fynbos endemic bird species. A linear regression line is plotted for granivores, with confidence bands representing 95% confidence interval.
15 16	438 439	Figure 3: Diurnal drinking patterns for 12 of the most commonly observed bird species at BHNR. Error bars represent standard error.
$\begin{array}{c} 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	440	Figure 3: Diurnal drinking patterns for 12 of the most commonly observed bird species at BHNR. Error bars represent standard error.

Page 29 of 31

