

Estimating conservation metrics from atlas data: the case of southern African endemic birds

Journal:	Bird Conservation International
Manuscript ID	BCI-MP-2015-0118.R1
Manuscript Type:	Main Paper
Date Submitted by the Author:	25-Apr-2016
Complete List of Authors:	Lee, Alan; Percy FitzPatrick Institute of African Ornithology, Biological Sciences Barnard, Phoebe; South African National Biodiversity Institute, Climate Change Adaptation Division Altwegg, Res; University of Cape Town, SEEC
Keywords:	Conservation status, citizen science, population change

SCHOLARONE[™] Manuscripts

Cambridge University Press

- ¹ Estimating conservation metrics from atlas data: the case of
- ² southern African endemic birds
- **3** ALAN T.K. LEE^{1,2}, RES ALTWEGG^{3,4} AND PHOEBE BARNARD^{1,2,4}
- 4 ¹ Climate Change BioAdaptation, South African National Biodiversity Institute, Private Bag X7,
- 5 Claremont 7735, South Africa
- 6 ² Percy FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape
- 7 Town, Private Bag X3, Rondebosch 7701, South Africa
- 8 ³ Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University
- 9 of Cape Town, Rondebosch 7701, Cape Town, South Africa
- ⁴ African Climate and Development Initiative, University of Cape Town, Rondebosch 7701, Cape Town,
- 11 South Africa
- 12
- 13 Email: alan.tk.lee@googlemail.com
- 14
- 15 Summary

16 The robust assessment of conservation status increasingly requires population metrics for species 17 that may be little-researched, with no prospect of immediate improvement, but for which citizen 18 science atlas data may exist. We explore the potential for bird atlas data to generate population 19 metrics of use in red data assessment, using the endemics and near-endemic birds (endemics) of 20 southern Africa. This region, defined here as South Africa, Lesotho and Swaziland, is home to a large 21 number of endemic bird species and an active atlas project. The Southern African Bird Atlas Projects 22 (SABAP) 1 and 2 are large scale citizen science data sets, consisting of 100'000s of bird checklists and 23 >10 million bird occurrence records on a grid across the subcontinent. These data contain detailed

24	information on species' distributions and population change. For conservationists, metrics that guide
25	decisions on the conservation status of a species for red listing can be obtained from SABAP,
26	including range size, range change, population change, and range connectivity (fragmentation). We
27	present a range of conservation metrics for these bird species, focusing on population change
28	metrics together with an associated statistical confidence metric. Population change metrics
29	correlate with change metrics calculated from dynamic occupancy modelling for a set of 191
30	common species. We identify four species with neither international nor local threatened status, yet
31	for which bird atlas data suggest alarming declines, and two species with threatened status for
32	which our metrics suggest could be reconsidered. A standardized approach to deciding the
33	conservation status of a species is useful so that charismatic or flagship species do not receive
34	disproportionate attention, although ultimately conservation status of any species must always be a
35	consultative process.
36	Keywords
37	Conservation status, population change, citizen science
38	
39	
40	

41 Introduction

In a world with biodiversity under increasing threat from anthropogenic activities, it can be difficult to prioritize the limited resources available to conservationists. Big, charismatic species may receive a disproportionate share of resources at the expense of small, non-descript or inaccessible species (Leader-Williams and Dublin, 2000). Systematic, objective ways of determining conservation status are thus increasingly important in a world in which conservation is easily driven by emotional rather than logically defensible criteria.

The understanding of bird distributions and how they are changing is crucial information for effective bird conservation (Gaston, 2003). In order to determine the conservation status of any species, information is needed on range size, population size and population trend (IUCN Standards and Petitions Subcommittee, 2014). Furthermore, information on habitat integrity and population fluctuations is also considered where available. However, these data are lacking for most species globally.

54 We explored ways of facilitating the conservation assessment process in regions of the world with 55 atlas data. Here we focus on southern Africa, defined for this purpose as South Africa, Lesotho and 56 Swaziland. In South Africa alone, there are over 600 species of breeding birds in a country of 1.2 57 million km², making biodiversity monitoring a challenging task (Taylor, et al., 2015). However, the 58 region is increasingly known internationally for its high-quality long-term, large-scale public 59 participation projects. Such citizen science projects make it possible for observations made by many 60 different people to be pooled and analysed as a whole (Cohn, 2008). The first and second Southern 61 African Bird Atlas Projects (SABAP1, 1987–1992, and SABAP2, 2007–present) are among Africa's 62 biggest biodiversity databases, and provide overviews of avian distribution across southern Africa 63 approximately 20 years apart (Harrison, et al., 2008). Spatial records in this database show changes 64 in species' distributions (range), and by comparing reporting rates (the proportion of checklists 65 reporting a species - a proxy for relative abundance) between these projects we can estimate 66 population change. This information has been used to examine issues of conservation interest,

67	including the influence on birds of climate change (Walther and Niekerk, 2014); identification of non-
68	climatic drivers of range change (Péron and Altwegg, 2015a) and changes in timing of migration
69	(Bussière, et al., 2015), as well as other questions of ecological interest (e.g. Péron and Altwegg,
70	2015b, Péron and Altwegg, 2015c). A few publications (e.g. Kemp, et al., 2001, Lee and Barnard,
71	2015) have used this information to inform conservation decisions for some species, but despite
72	evidence that reporting-rate declines are related to observed population decline (Amar, et al., 2015),
73	there has been little testing of the robustness of these measures and they have not been used
74	formally at a national scale to inform conservation decisions.
75	We explore the capacity of this atlas project to support conservation status assessment by
76	overviewing the information that can be obtained from the SABAP projects for 58 southern African
77	endemic and near-endemic bird species. We present population change indices together with a
78	measure of statistical confidence in these, as well as range-size, range-size change and range
79	connectivity metrics. This information should be important for those evaluating the conservation
80	status of these species in southern Africa.
81	Methods
82	SABAP data
83	The SABAP data sets consist of bird lists compiled by birding citizen scientists. SABAP1 used quarter
84	degree grid cells (grid cells, 15'x15') as the sampling unit, corresponding to standard southern
85	African 1:50,000 topographical maps (Harebottle, et al., 2007). The SABAP2 spatial sampling unit is

- the 5'x5' pentad. There are nine pentads nested within each grid cell, so we aggregated the data of
- the second phase, SABAP2, at the quarter degree resolution in order to compare both phases.
- 88 Birders were asked to submit lists of all species that they saw or heard during visits to grid cells of
- 89 between two hours and five days. As of 2014 SABAP2 data existed for over 3,000 grid cells, with
- 90 country-wide coverage illustrated used in our analysis displayed in Figure 1.

91	We consider those species with >70% of range or population within South Africa, Lesotho and
92	Swaziland as near-endemics, as listed by Birdlife South Africa (BLSA, Lotz, et al., 2014). We used this
93	list to obtain the national and global conservation status (Least Concern, LC, to Endangered, EN) for
94	these species. We restrict our analysis to this subset of the >840 species in the SABAP database, as
95	population trends identified for endemics and near-endemics can be more accurately inferred from
96	this analysis than for species with significant ranges outside the survey area.
97	Of the 69 endemics on the above list, we consider 58 after excluding those with recent taxonomic
98	splits. Several species in the BLSA checklist have been split since SABAP1 and are represented as two
99	or more species in SABAP2. We do not consider new southern African species split from species with
100	a combined range that extends beyond the study area. This includes: Hottentot Buttonquail Turnix
101	hottentottus, Karoo Thrush Turdus smithi, Cape Parrot Poicephalus robustus, and the Long-billed
102	Lark complex. The data used in this analysis were accessed from the SABAP2 database over 29 – 30
103	May 2014.
104	
105	Reporting rate
106	The reporting rate is the number of times a species was reported in a grid cell divided by the total

104

Reporting rate 105

106	The reporting rate is the number of times a species was reported in a grid cell divided by the total
107	number of checklists for that grid cell. There is evidence that reporting rates are monotonically
108	related to abundance (Amar, et al., 2015, Griffioen, 2001, Robertson, et al., 1995). Reporting rate
109	data are publicly available for each species from http://sabap2.adu.org.za/ and are a useful first step
110	in quantifying changes in abundance (e.g. Huntley, et al., 2012). For between-atlas period
111	comparisons we select only the subset of data that were sampled on at least two occasions during
112	each atlas period (n = 2,005 grid cells). We calculate a summary <i>reporting rate change</i> metric based
113	on the average reporting rate across all grid cells for each project for which a species was ever
114	present:

115 (mean SABAP2 reporting rate – mean SABAP1 reporting rate)/mean SABAP1 reporting rate

where positive values indicate increase, and negative values indicate decrease. We express this ratio as a percentage. The premise behind this metric is based on the concept of the regression to the mean: while extreme results on a site by site basis certainly exist, the mean across the population

should tend towards a stable range of values.

120 As reporting rate change within a grid cell is undefined if the species was not recorded in that cell

121 during SABAP1, due to division by zero, we create a standardized index of *population change* that

allows us to present variation in change across a species range. For each grid cell we calculated the

- 123 population change metric as follows:
- 124 SABAP2 reporting rate / (SABAP1 reporting rate + SABAP2 reporting rate) 0.5

125 This metric returns a value between -0.5 and 0.5, with values > 0 indicating increases, and values < 0

126 indicating declines (adapted from Amar, et al., 2010). A population change map for each species is

127 available as electronic supplementary information, together with reporting rate and range change

maps. For an overview of population trends across southern Africa for this set of species, we

129 calculate the mean of population change across all species from within each grid cell as a population

130 change map. We correlate the population change metric against each of the further metrics

described below using Pearson's product-moment correlations in R (R Core Team, 2015).

132

133 As a final visual representation of change, based on list data for the set of endemic birds, we 134 calculate the ratio of lists with a species recorded to lists without that species for each atlas period. 135 This is the presence/absence ratio (presented in Cunningham, et al., 2016). The log of the mean of 136 these metrics across all grid cells plotted against each other allows a visualization of species that are 137 doing well in SABAP2 compared to SABAP1 as a function of range. We emphasize that species close 138 together on the resulting chart do not necessarily have similar populations, as the reporting rates 139 are influenced by species detectability; for instance large or vocal species are likely reported more 140 frequently than expected given density.

- 141 The standard statistic for the equality of two proportions (z-score; Underhill and Bradfield, 1998) can
- 142 be used as an index to measure confidence in change in relative abundance that accounts for the
- 143 number of lists submitted for each grid cell for each period. The following is the formula as described
- in Underhill and Brooks (2014):

$$Z = \frac{P2 - P1}{\sqrt{\left(P(1-P)\left(\frac{1}{n1} - \frac{1}{n2}\right)\right)}}$$

where P1 and P2 are the reporting rates from SABAP1 and SABAP2 respectively, n1 and n2 are the numbers of checklists on which the reporting rates are based, and P, reporting rate, is given by:

$$P = \frac{n1P1 + n2P2}{n1 + n2}$$

147 We calculate the mean of the z-score for the grid cells in a species range as an index of confidence in 148 the direction of population change for each species: large negative values indicate evidence for 149 population decline, large positive values indicate evidence for population increase. Values close to 150 zero indicating unclear status: populations could be declining, increasing or not changing. 151 *Population change metric validation with dynamic occupancy modelling* 152 Treating reporting rate as a proxy for abundance relies on the premise that variation in detection 153 probability is largely due to variation in abundance. This assumption is shared with other abundance 154 estimators that are based on detection / non-detection data (Péron and Altwegg, 2015a, Royle and 155 Nichols, 2003) and appears to be reasonable for the SABAP data (Huntley, et al., 2012, Robertson, et 156 al., 1995). We also assume that the trends in species abundance in areas not well covered (notably 157 the arid central western regions) were similar to those in well-covered areas. As we cannot validate 158 these assumptions and it has been shown that simple metrics can produce biased trend estimates 159 when sampling is not considered (Isaac, et al., 2014), we test the population change metric 160 described above against 'probability of reporting' change between atlas periods based on 191 161 common species from dynamic occupancy modelling methods proposed by Bled, et al. (2013) and

- 162 presented in Péron and Altwegg (2015a). These models attempt to account for variation in
- detectability that is a consequence of observer, habitat and season. However, due to the large
- 164 number of variables these models are unstable for species with low reporting rates and small ranges
- i.e. most of the species in our set of endemic birds.
- 166 We present correlation coefficients at the community level using mean values for each species based
- 167 on the summary metrics explained above and probability of reporting change for the set of 191 bird
- 168 species. We also examine correlation between population change scores and z-scores with
- probability of reporting change for each of the 20 endemic species at the QDGC level within the set
- 170 of 191 birds. Lastly, we examine the relationship between the correlation coefficient output for the
- 171 last analysis with the 20 endemic species with the log-normalised number of QDGCs to examine the
- influence of range size on these comparisons.
- 173
- 174 *Range and range change*
- 175 Between atlas periods, ranges of some species expanded while others have contracted. To capture a
- 176 snapshot of net gain or loss in range, we use the following calculation based on grid cells in which a
- 177 species has been recorded:
- 178 (count of grid cells from SABAP2 count of grid cells from SABAP1) /count of grid cells from SABAP1
- 179 Plotting reporting rate change against range change is useful for gauging how well a species is doing
- 180 compared to other species.
- 181 To exclude that range where perhaps a species was vagrant or possibly incorrectly recorded in
- 182 SABAP1, we excluded grid cells that had >50 lists but only 1 record in SABAP1 and call this core
- range. We calculated core range change as above for range change; but this is a stricter measure of
- 184 range change.

- 185 We calculated the total number of grid cells from where a species was recorded over both atlas
- 186 periods. This value multiplied by the approximate area covered by a grid cell, 729 km², we call the
- 187 species SABAP range, which we consider a surrogate for Extent of Occurrence (EOO; the minimum
- 188 convex polygon encompassing all known normal occurrences of a particular species). We compare
- 189 these to ranges from Birdlife International species accounts from
- 190 BirdLife Data Zone (http://www.birdlife.org/datazone/home) using standard correlation tests in R (R
- 191 Core Team, 2015). We also calculate the area of pentads from which a species has been recorded
- and treat this finer scale reporting as an indication of Area of Occupancy (AOO; the subset of the
- 193 EOO where the species actually occurs).
- 194

195 *Connectivity index*

- 196 For each species we calculated a range connectivity score. Each grid cell where a species was 197 recorded was scored for the presence of the species in the four neighbouring grid cells to the north, 198 south, west and east, being those grid cells with greatest surface area contact. The maximum score 199 is four for a grid cell surrounded by other occupied grid cells, while an isolated grid cell will have a 200 score of 0. For each species we record the mean connectivity score across the species range. This 201 index may be influenced by detection probability: a species with a checker-board pattern might 202 occur widely but be hard to detect (e.g. Peregrine Falcon Falco peregrinus). As this score is a function 203 of the area of a species range, we correct by dividing the connectivity score by the log of the number 204 of grid cells in which a species occurs.
- 205

206 Results

207 Population change for southern African endemics in relation to reporting rate and range change

208	Displaying population metrics for this set of species allows one to examine individual species trends
209	in the broader context of species trends for the region. In the example of what we call southern
210	African endemics, population trends were mixed, with mean reporting rate lower for 33 species, and
211	higher for the remaining 25 (mean population change = -0.06 ± 0.09). There was a correlation
212	between range change and reporting rate change (t = 6.7, p < 0.01, df = 56, Figure 2); as, generally, if
213	a species is no longer reported from a grid cell this is reflected in both metrics. A species with
214	reporting rate change < -30% and range change < -30% (bottom left Figure 2, Figure 3) may be a
215	species of conservation concern based on IUCN criteria A (population size reduction), where
216	population reduction (measured over the longer of 10 years or 3 generations) is greater than 30%.
217	Several species with positive range and reporting rate change metrics are still species of
218	conservation concern, as there may be reasons other than population change metrics for
219	considering their status (e.g. population size and fragmentation).
220	There are four species currently listed as species of Least Concern that merit further investigation
221	into their conservation status: Ground Woodpecker, Drakensberg Rockjumper, Sentinel Rock Thrush
222	and Gurney's Sugarbird (Figure 3). All these species are associated with upland areas or the
223	grassland biome, as are the three species with existing threatened status in Figure 3. Confidence in
224	population change (mean z-score) of species of conservation concern was lowest for Botha's Lark,
225	but the total number of grid cells where the species was ever recorded was only 20. The associated
226	range change for Botha's Lark between atlas periods was -64%. The total core range of this species
227	was 15 grid cells, with a range change of -50%: an alarming apparent contraction.
228	The seven species identified in Figure 3 as species of conservation concern are all species for which
229	the confidence measure (mean z-score) across grid cells was within the lower quartile of values for
230	the total set of species (Table 1). In addition to the above species, those species with large measures
231	of confidence in decrease (negative z-scores) were: Orange-breasted Sunbird, Cape Rockjumper,
232	Protea Seedeater, Pied Starling and Grey-winged Francolin. For these species we are more confident
233	there are population declines possibly as they are associated with areas with large atlasing efforts,

- although the magnitude of these declines may not necessarily meet IUCN criteria for threatened
- 235 status without concurrent declines in reporting rate. Presence/absence ratios for Protea Seedeater,
- 236 Grey-winged Francolin and Pied Starling are low (Figure 4) and appear among the set of species
- faring most poorly according to this measure.
- 238 The set of species for which we are most confident of population declines are those associated with
- 239 grassland and fynbos (a biome restricted mostly to the Western and Eastern Cape provinces
- 240 (Cowling, 1995); Table 1, Figure 5). The overview map of population change suggests endemic
- species as a whole are faring particularly poorly around Swaziland and north-eastern South Africa.
- 242 The fynbos biome (a fire driven ecosystem dominated by shrubs, geophytes and the Restionaceae
- family (Cowling, 1995)) in South Africa's most south western corner is also an area with largely
- 244 negative trends.
- 245 *Population change metric validation with dynamic occupancy modelling*

246 For a set of 191 passerine species for which probability of reporting change was calculated from dynamic occupancy modelling (Peron and Altwegg 2015a), at the community level there was a 247 248 significant positive correlation with both our population change metric (rs = 0.46, t = 7.1, df = 189, p 249 < 0.001) and mean z-scores (rs = 0.56, t = 9.3, df = 189, p < 0.001). However, in the analysis at the 250 species level for the 20 endemic species for which we had occupancy estimates at the grid level, 13 251 species showed a significant positive correlation between the dynamic occupancy modelling 252 probability of reporting change and population change; while 15 species showed significant 253 correlation with z-scores. Lastly, the size of range seemed to influence this relationship as there was 254 a significant negative correlation between correlation coefficient output from the above analyses 255 and range size for the 20 endemics (rs = -0.79, t = -5.3, df = 18, p < 0.001) suggesting this relationship 256 between occupancy model metrics and our metrics is weak for species with smaller ranges.

257 Range

258	The SABAP ranges of endemic and near-endemic species in southern Africa were generally large
259	(>20,000 km ² ; an IUCN threshold criteria for determining threatened species status). SABAP range
260	and published EOO values were highly correlated, with those from SABAP lower on average (BLI EOO
261	348,306 km ² ; SABAP range 291,939 km ² ; t = 16.7, p < 0.01, df = 56). Only two species had total
262	ranges <20,000 km ² : Botha's Lark and Rudd's Lark. Overall, occupied area as calculated from pentad
263	data was on average 23.6% of that of SABAP range. Apart from Rudd's and Botha's Larks, only
264	Mountain Pipit had the pentad area close to 2,000 km ² , representing that AOO threshold under
265	which a species might meet conservation status criteria. There was no correlation between
266	population change and SABAP range (t = 0.1 , p = 0.91 , df= 56); or the pentad area from which a
267	species was recorded (t = 1.4 , p = 0.16 , df = 56).

268 Range connectivity

269	Metrics of connectivity varied widely among the set of endemic bird species. Species identified as
270	those of conservation concern by Lotz, et al. (2014) dominated the cluster of species with high
271	fragmentation and small ranges, both corrected and un-corrected (Table 1, Figure 6). There was a
272	significant positive correlation between the corrected connectivity score and population change (t =
273	2.6, $p = 0.01$, df = 56) with species with negative population change also those species with low
274	connectivity. Pied Starling, a widely distributed arid-zone generalist, had the highest connectivity
275	overall. On the other hand, the arid-zone Cinnamon-breasted Warbler had the lowest connectivity
276	score.

277 Discussion

278 Citizen science projects like bird atlas projects have an important role to play in biodiversity

279 conservation (Robertson, et al., 2010). In this article we have shown ways in which species atlas data

- 280 can be used to develop population parameters that can assist conservation assessment of bird
- 281 species. However, we regard our analysis as only one approach to be used alongside other lines of
- 282 evidence when assessing the conservation status of species. In our case study from southern Africa,

- 283 SABAP2 is a dynamic dataset which facilitates the exploration of numerous ecological and
- 284 conservation questions. It has been effective as 'an early warning system' to alert conservationists
- of species in trouble (Barnard and Villiers, 2012, Lee and Barnard, 2012).

286

287 *Population change*

Both Loftie-Eaton (2014) and Péron and Altwegg (2015a) found evidence that the species sets that
they examined using atlas data were reported more frequently during SABAP2. The latter study of
191 widely distributed species reported only increases in probability of recording between atlas
periods. In contrast to these two studies, several endemic species from our study show evidence for
population declines.

293 In southern Africa, the five worst-faring birds by standardized population change have high affinities 294 to the grassland biome or mountain regions. Of these, Botha's Lark has been identified as 295 Endangered. However, we identify four species listed as Least Concern that show changes in 296 population status and range size which qualify them as species of conservation concern: Ground 297 Woodpecker, Sentinel Rock Thrush, Drakensberg Rockjumper and Gurney's Sugarbird. It has been 298 noted that Gurney's Sugarbird is adversely impacted by inappropriate fire regimes (de Swardt, 299 2010), but there is little published on the other species. It has previously been shown using SABAP 300 data that the species diversity of grassland birds generally, and globally threatened grassland birds in 301 particular, is significantly and negatively correlated with the extent of afforestation (Allan, et al., 302 1997). Furthermore, climate envelope modelling suggests that fynbos and grassland bird species are 303 among those most at risk from global climate change (Huntley and Barnard, 2012). Our analysis 304 suggests that some species of this biome are in detectable decline over the relatively short period of 305 time between atlas periods. 306 Several species with grassland affinities show signs of positive population change: Cloud Cisticola,

307 Melodious Lark, Mountain Pipit and Southern Bald Ibis. However, long term monitoring suggests

308 that Southern Bald Ibis continues to show moderate declines at breeding sites, with a breeding 309 population of < 2000 pairs (C. Henderson, unpublished). This species is a colonial breeder that often 310 forages in groups. Bird atlas data may not be a sufficiently sensitive early warning tool for population 311 declines of charismatic or predictably flocking species, as their abundance is not directly recorded 312 and so even large declines in mean flock size would not be reflected in some cases. However, this 313 does suggest that Pied Starling and Grey-winged Francolin, species fitting this description where 314 declines have been observed, may be worthy of special attention. Mountain Pipit shows an unusual 315 situation that reporting rate change was very positive between SABAP1 and SABAP2, which may be a 316 consequence of small range size, for which these summary metrics become unstable. The range for 317 Mountain Pipit showed moderate decrease, and total current range may be under 20,000 km² within 318 South Africa. Melodious Lark, currently with IUCN red list status Near Threatened attributed to 319 moderately rapid population decline, is likely stable. Our analysis supports the most recent local 320 regional ranking of Least Concern (Taylor, et al., 2015). Species with high affinity for forest generally showed little sign of population decreases. Knysna 321 322 Warbler appears to have expanded its range eastwards despite lower coverage in this part of the 323 species range during SABAP2. This species still exhibits a low degree of range connectivity due to its 324 reliance on isolated forest patches. Knysna Woodpecker was the species that fared the best of all the 325 endemics by various criteria. It is classified as Near Threatened due to historical loss of range from 326 the east coast, coupled with small estimated populations within protected areas. However, 327 population is currently stable, and in the absence of further threats this species might be classified 328 as Least Concern. 329 Two arid zone species showed core range change declines of >35%: Sclater's Lark and Black-eared

330 Sparrow-lark. Cinnamon-breasted Warbler showed reporting rate declines of >30% and very low

- range connectivity. There are concerns for bird populations of southern Africa's arid zones, as this
- 332 area is experiencing dramatic increases in extreme heat events (Cunningham, et al., 2013). However,
- the area has been poorly covered during SABAP2 and by contrast Red Lark showed increases in

334	reporting rate and moderate range increases. There is thus a continued need for improved atlas
335	coverage of dry regions before concrete conclusions can be made regarding arid-zone species using
336	atlas data.

- Birds with affinity for fynbos generally also fared poorly, with Protea Seedeater and Cape
- 338 Rockjumper showing declining trends. Cape Rockjumper has been identified as vulnerable to
- 339 warming due to climate change (Lee and Barnard, 2015), while Protea Seedeater declines can be
- 340 attributed to decrease in mature Protea sp. and associated food stands as well as nesting sites (Lee
- and Barnard, 2014). Several species with fynbos and grassland affinity appear to be faring poorly,

342 including Black Harrier, Ground Woodpecker and Grey-winged Francolin. By contrast, Cape Bulbul,

343 Victorin's Warbler and Cape Grassbird show positive population change trends.

344 Range

- 345 The area encompassed by grid cells best fits the IUCN definition of Extent of Occurrence (EOO),
- defined as that area that can measured by a minimum convex polygon and which contains all sites of
- 347 occurrence. However, for species with fragmented range due to poor coverage, this area would
- 348 currently under-represent the technical definition of EOO. Species with EOO <20,000 km² may qualify

349 for endangered status if this range is also severely fragmented combined with continuing observed

decline in population metrics or extreme population fluctuations. The two species meeting these

351 criteria are Rudd's and Botha's Larks, both currently classified as Endangered.

352 Range connectivity

Species with small, highly fragmented ranges are traditionally those species most at risk from a conservation perspective (Bolger, *et al.*, 1991). Sclater's Lark, Cinnamon-breasted Warbler and Blackeared Sparrow-lark are three arid-zone species with low scores. The scores of arid zone specialists may be influenced by poor coverage in the arid western and interior of South Africa. On the other hand, forest species like Chorister Robin-chat, Forest Buzzard and Knysna Warbler would be expected to have a fragmented distribution as afromontane forest is a naturally fragmented biome

Cambridge University Press

in South Africa. The low connectivity for the upland or grassland species Yellow-breasted Pipit and

360 Sentinel Rock-Thrush is unexpected give the extent of their respective preferred biomes.

361 *Conclusions*

362 We have shown how species atlas datasets, using the example of the Southern African Bird Atlas 363 Project, can be used to extract simple population metrics for use in developing conservation status 364 assessments, even where detailed research on species is unavailable. Our set of southern African 365 endemic and near-endemic bird species shows evidence for population declines among several 366 species. This fits the global pattern that range-restricted species are more vulnerable to patterns of 367 global change. Across southern Africa there is concern that range-restricted species will increasingly 368 have no climate envelope space in which to move (Huntley, et al., 2012). 369 While we concentrate on southern African endemic bird species, this region hosts considerable 370 populations of bird species with global conservation status that we have not considered in this

371 assessment, such as Blue Swallow *Hirundo atrocaerulea*, Bearded Vulture *Gypaetus barbatus* and

372 several crane species. While some of the techniques introduced here, such as standardized

373 population change in conjunction with z-scores can be used for these species, there are further

374 caveats to the interpretation of these species, as accounting for movements and range changes

375 elsewhere are difficult to account for.

376 In order to interpret atlas data, greater use should be made of statistics that standardize reporting 377 rates over as wide an area as possible, and greater use should be made of occupancy modelling that 378 accounts for various issues related to detection arising from observer and seasonal affects (e.g. Bled, 379 et al., 2013), for species with sufficiently large ranges. The metrics we used in this study rely on the 380 assumption that the probability of detecting a species at a site is dominated by its local abundance 381 and otherwise reasonably constant (Guillera-Arroita, et al., 2015). In contrast, occupancy- and 382 related models allow for modelling the observation process in more detail (Altwegg, et al., 2008, 383 MacKenzie, et al., 2006, Royle and Nichols, 2003). However, for species with small ranges compared

384 to the spatial sampling unit, statistically separating the observation process from the biological 385 process can be challenging. In these cases, we argue that comparisons based on raw data can still be 386 useful, provided that they are interpreted with appropriate care. In spite of the difficulties in 387 interpretation of changes in reporting rates between SABAP1 and SABAP2, it is likely that if the 388 SABAP2 results for a species shows decreased reporting rates (or complete absence) over large parts 389 of its range, this reflects genuine range change, as comparisons are more likely to be conservative 390 than to exaggerate increases or decreases (Loftie-Eaton, 2014). With SABAP2 entering its 7th year 391 with consistent reporting for the last five years, this project will in the near future provide 392 information on population change in its own right. There is thus every reason to continue to 393 encourage the citizen scientists who collect these data to continue doing so, and thus add value to 394 one of Africa's largest, and certainly most accessible and vibrant biodiversity databases. 395 Acknowledgements

396 Our profound thanks to the many citizen scientists who together have submitted more than 13

million records of bird distribution to SABAP1 and 2. This manuscript would not have been possible
without the work of Les Underhill, Doug Harebottle, Michael Brooks and the SABAP2 team, and is

- part of the considerable evidence of the value of these contributions. Ernst Retief commented on a
- 400 draft version of this paper.

401 **Financial support**

- 402 Funding for this study was received from Birdlife South Africa, the Percy FitzPatrick Institute of
- 403 African Ornithology, and National Research Foundation (NRF) grants to Res Altwegg and to Phoebe
- 404 Barnard. The NRF accepts no liability for opinions, findings and conclusions or recommendations
- 405 expressed in this publication.

406 References

- 407 Allan, D. G., Harrison, J. A., Navarro, R., van Wilgen, B. W. and Thompson, M. W. (1997) The impact
- 408 of commercial afforestation on bird populations in Mpumalanga Province, South Africa—insights
- 409 from bird-atlas data. *Biological Conservation* 79: 173-185.
- 410 Altwegg, R., Wheeler, M. and Erni, B. (2008) Climate and the range dynamics of species with
- 411 imperfect detection. *Biology letters* 4: 581-584.
- 412 Amar, A., Redpath, S., Sim, I. and Buchanan, G. (2010) Spatial and temporal associations between
- 413 recovering populations of common raven Corvus corax and British upland wader populations.
- 414 Journal of Applied Ecology 47: 253-262.
- 415 Amar, A., Cloete, D. and Whittington, M. (2015) Using independent nest survey data to validate
- 416 changes in reporting rates of Martial Eagles between the Southern African Bird Atlas Project 1 and 2.
- 417 *Ostrich* 87: 1-5.
- 418 Barnard, P. and Villiers, M. d. (2012) Biodiversity early warning systems: South African citizen
- 419 scientists monitoring change, South African National Biodiversity Institute, Pretoria, South Africa.
- 420 Bled, F., Nichols, J. D. and Altwegg, R. (2013) Dynamic occupancy models for analyzing species' range
- 421 dynamics across large geographic scales. *Ecology and evolution* 3: 4896-4909.
- 422 Bolger, D. T., Alberts, A. C. and Soule, M. E. (1991) Occurrence patterns of bird species in habitat
- 423 fragments: sampling, extinction, and nested species subsets. *American Naturalist*: 155-166.
- 424 Bussière, E. M. S., Underhill, L. G. and Altwegg, R. (2015) Patterns of bird migration phenology in
- 425 South Africa suggest northern hemisphere climate as the most consistent driver of change. *Global*
- 426 *Change Biology* 21: 2179-2190.
- 427 Cohn, J. P. (2008) Citizen science: Can volunteers do real research? *BioScience* 58: 192-197.
- 428 Cowling, R. (1995) Fynbos: South Africa's unique floral kingdom, University of Cape Town, Cape
- 429 Town.
- 430 Cunningham, S., Madden, C., Barnard, P. and Amar, A. (2016) Electric crows: powerlines, climate
- 431 change and the emergence of a native invader. *Diversity and Distributions* 22: 17-29.

- 432 Cunningham, S. J., Kruger, A. C., Nxumalo, M. P. and Hockey, P. A. (2013) Identifying Biologically
- 433 Meaningful Hot-Weather Events Using Threshold Temperatures That Affect Life-History. *PloS one* 8:
- 434 e82492.
- 435 de Swardt, D. H. (2010) Gurney's Sugarbirds in the Lydenburg area. Environment People and
- 436 *Conservation in Africa* 2: 42-45.
- 437 Gaston, K. J. (2003) The structure and dynamics of geographic ranges, Oxford University Press.
- 438 Griffioen, P. (2001) Temporal changes in the distributions of bird species in eastern Australia, La
- 439 Trobe University.
- 440 Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., McCarthy, M.
- 441 A., Tingley, R. and Wintle, B. A. (2015) Is my species distribution model fit for purpose? Matching
- data and models to applications. *Global Ecology and Biogeography* 24: 276-292.
- Harebottle, D., Smith, N., Underhill, L. and Brooks, M. (2007) Southern African Bird Atlas Project 2:
- 444 instruction manual. Animal Demography Unit, University of Cape Town, Cape Town.
- 445 Harrison, J., Underhill, L. and Barnard, P. (2008) The seminal legacy of the Southern African bird atlas
- 446 project. South African Journal of Science 104: 82-84.
- 447 Hockey, P., Dean, W. R. J. and Ryan, P. (2005) Roberts birds of southern Africa, 7 ed., Trustees of the
- 448 John Voelcker Bird Book Fund, Johannesburg.
- 449 Huntley, B., Altwegg, R., Barnard, P., Collingham, Y. C. and Hole, D. G. (2012) Modelling relationships
- 450 between species spatial abundance patterns and climate. *Global Ecology and Biogeography* 21: 668-
- 451 681.
- 452 Huntley, B. and Barnard, P. (2012) Potential impacts of climatic change on southern African birds of
- 453 fynbos and grassland biodiversity hotspots. *Diversity and Distributions* 18: 769-781.
- 454 Isaac, N. J., Strien, A. J., August, T. A., Zeeuw, M. P. and Roy, D. B. (2014) Statistics for citizen science:
- 455 extracting signals of change from noisy ecological data. *Methods in Ecology and Evolution* 5: 1052-
- 456 1060.

- 457 IUCN Standards and Petitions Subcommittee (2014) Guidelines for Using the IUCN Red List
- 458 Categories and Criteria. Version 11. Prepared by the Standards and Petitions Subcommittee.
- 459 Downloadable from <u>http://www.iucnredlist.org/documents/RedListGuidelines.pdf</u>.
- 460 Kemp, A., Herholdt, J., Whyte, I. and Harrison, J. (2001) Birds of the two largest national parks in
- 461 South Africa: a method to generate estimates of population size for all species and assess their
- 462 conservation ecology. *South African Journal of Science* 97: p. 393-403.
- 463 Leader-Williams, N. and Dublin, H. T. (2000) Charismatic megafauna as 'flagship species'. Priorities
- 464 for the conservation of mammalian diversity: has the panda had its day: 53-81.
- 465 Lee, A. T. K. and Barnard, P. (2012) Endemic Fynbos avifauna: comparative range declines a cause for
- 466 concern. *Ornithological Observations* 3: 19-28.
- 467 Lee, A. T. K. and Barnard, P. (2014) Aspects of the ecology and morphology of the protea seedeater,
- 468 Crithagra leucopterus, a little-known fynbos endemic. *African Zoology* 49: 295-300.
- 469 Lee, A. T. K. and Barnard, P. (2015) Endemic birds of the Fynbos biome: a conservation assessment
- 470 and impacts of climate change. *Bird Conservation International* 26: 52-68.
- 471 Loftie-Eaton, M. (2014) Geographic range dynamics of South Africa's bird species, Department of
- 472 Biological Sciences, University of Cape Town, South Africa, p. 133.
- 473 Lotz, C., Allan, D., Bowie, R., Chittenden, H., Cohen, C., Dowsett, B., Gibbon, G., Hardaker, T., Marais,
- 474 E., Peacock, F., Retief, E., Ryan, P., Smit-Robinson, H. and Taylor, M. (2014) BirdLife South Africa
- 475 Checklist of Birds in South Africa available at: <u>http://www.birdlife.org.za/publications/checklists</u>,
- 476 BirdLife South Africa.
- 477 MacKenzie, D. I., Nichols, J., Royle, J., Pollock, K., Bailey, L. and Hines, J. (2006) Occupancy estimation
- 478 *and modeling*, San Diego, California, USA.
- 479 Péron, G. and Altwegg, R. (2015a) Twenty-five years of change in southern African passerine
- 480 diversity: nonclimatic factors of change. *Global Change Biology*: 1-21.
- 481 Péron, G. and Altwegg, R. (2015b) The abundant centre syndrome and species distributions: insights
- from closely related species pairs in southern Africa. *Global Ecology and Biogeography* 24: 215-225.

- 483 Péron, G. and Altwegg, R. (2015c) Low bird diversity in the Fynbos plant diversity hotspot:
- 484 Quaternary legacies in the current distributions of passerine birds. *Ecography*: doi:
- 485 10.1111/ecog.01176.
- 486 R Core Team (2015) R: A language and environment for statistical computing. R Foundation for
- 487 Statistical Computing, Vienna, Austria. URL <u>http://www.R-project.org/</u>.
- 488 Robertson, A., Simmons, R. E., Jarvis, A. M. and Brown, C. J. (1995) Can bird atlas data be used to
- estimate population size? A case study using Namibian endemics. *Biological Conservation* 71: 87-95.
- 490 Robertson, M. P., Cumming, G. S. and Erasmus, B. F. N. (2010) Getting the most out of atlas data.
- 491 *Diversity and Distributions* 16: 363-375.
- 492 Royle, J. A. and Nichols, J. D. (2003) Estimating abundance from repeated presence-absence data or
- 493 point counts. *Ecology* 84: 777-790.
- 494 Taylor, M. R., Peacock, D. S. and Wanless, R. M. (2015) *The Eskom Red Data Book of Birds of South*
- 495 *Africa, Lesotho and Swaziland*, BirdLife South Africa, Johannesburg.
- 496 Underhill, L. and Bradfield, D. (1998) *Introstat*, Juta and Company Ltd, South Africa.
- 497 Underhill, L. G. and Brooks, M. (2014) Preliminary summary of changes in bird distributions between
- 498 the first and second Southern African bird atlas projects (SABAP1 AND SABAP2). Ornithological
- 499 *Observations* 5: 258-293.
- 500 Walther, B. A. and Niekerk, A. (2014) Effects of climate change on species turnover and body mass
- 501 frequency distributions of South African bird communities. *African Journal of Ecology* 53: 25-35.
- 502
- 503

Table 1: Population trend summary metrics for the southern African endemic bird species, arranged by population change. Names are according to Hockey, *et al.* (2005) with South Africa endemics indicated by *. Habitat indicates preferred biome/s. SA status: Conservation status according to Taylor, *et al.* (2015). Global Status: IUCN conservation status. RR change: reporting rate change; Pop change: mean of the standardized population change and standard deviation (sd); range change: difference of grid cells between SABAP2 and SABAP1, divided by grid cell count from SABAP1; Core range change: as for previous but excluding grid cells with low reporting rate; mean z: the mean of the z-scores across grid cells; mass in grams; SABAP2 range: grid cell count * 729, approximate range in km²; All SABAP range: grid cell count for any grid cell from which a species was recorded in either atlas *729; Pentad area: count of pentads from which a species was recorded in SABAP2 * 81; Fragment score: index from 0 (isolated) to 4 (completely connected). Values in bold: RR change < -30%; Pop change < -0.25; Range and core range change < -30%; mean-z < -0.9; SABAP2 and All SABAP range < 20,000; Pentad area < 2,000; Fragment score < 1.5.

Name	Latin name	Habitat	SA status	Global Status	RR change	Pop change	s	Range change	Core range change	mean z	mass	SABAP2 range	All SABAP range	Pentad area	Fragment score
Botha's Lark *	Spizocorys fringillaris	Grass	EN	EN	-45.95	-0.272	0.39	-64.71	-50.00	-0.175	19	4374	14580	1053	1.2
Ground Woodpecker	Geocolaptes olivaceus	Grass, Fynbos	LC	LC	-51.67	-0.246	0.33	-43.25	-39.53	-1.108	120	199017	398763	44145	2.64
Sentinel Rock Thrush	Monticola explorator	Grass, Fynbos	LC	LC	-34.44	-0.229	0.36	-48.74	-38.46	-0.625	47	105705	235467	20088	2.21
Drakensberg Rockjumper	Chaetops aurantius	Grass	LC	LC	-28.53	-0.207	0.34	-42.03	-35.48	-0.669	50	32076	63423	5184	2.45
Gurney's Sugarbird	Promerops gurneyi	Grass	LC	LC	-43.51	-0.204	0.34	-40.38	-35.16	-0.574	35	45198	87480	9882	1.88
Black Harrier	Circus maurus	Fynbos, Grass	EN	VU	-39.21	-0.186	0.38	-41.01	-36.14	-0.441	550	236925	515403	52731	2.31
Protea Seedeater *	Crithagra leucoptera	Fynbos	LC	LC	-46.47	-0.173	0.37	-23.75	-10.61	-0.979	22	44469	69255	8829	1.97
Cape Rockjumper *	Chaetops frenatus	Fynbos	NT	LC	-53.39	-0.165	0.39	-25.00	-19.15	-0.837	57	30618	48843	5913	1.7
Rudd's Lark *	Heteromirafra ruddi	Grass	EN	VU	-50.07	-0.162	0.46	-40.00	-14.29	-0.303	26	4374	10935	1053	1.13
Sclater's Lark	Spizocorys sclateri	Karoo	NT	NT	-15.38	-0.153	0.43	-42.86	-41.18	0.124	20	16767	64152	3240	1.58
Grey-winged Francolin	Scleroptila africana	Grass, Fynbos	LC	LC	-39.02	-0.150	0.35	-23.74	-20.58	-0.930	435	264627	419904	60912	2.85
Black-eared Sparrow-lark	Eremopterix australis	Karoo	LC	LC	-17.01	-0.143	0.42	-40.91	-39.18	-0.120	14	86751	267543	17739	2.54
Black-headed Canary	Serinus alario	Karoo	LC	LC	-24.03	-0.141	0.34	-30.12	-27.96	-0.392	12	268272	532170	68202	3.02
Fairy Flycatcher	Stenostira scita	Karoo	LC	LC	-13.79	-0.134	0.37	-31.01	-27.03	-0.322	6	424278	767637	115668	2.85

Cape Rock Thrush	Monticola rupestris	Generalist	LC	LC	-23.29	-0.117	0.33	-20.89	-16.92	-0.588	58	333882	487701	91368	2.85
Knysna Turaco	Tauraco corythaix	Forest	LC	LC	-26.21	-0.113	0.32	-22.31	-20.35	-0.502	310	134136	213597	47871	2.56
Swee Waxbill	Coccopygia melanotis	Generalist	LC	LC	-25.22	-0.111	0.37	-22.98	-17.70	-0.275	6.5	212868	341901	62289	2.47
Cinnamon-breasted Warbler	Euryptila subcinnamomea	Karoo	LC	LC	14.27	-0.100	0.45	-31.25	-25.42	-0.050	12	32805	76545	5427	1.09
Pied Starling	Lamprotornis bicolor	Karoo	LC	LC	-19.02	-0.099	0.24	-11.79	-10.93	-1.068	104	706401	893754	337851	3.62
Blue Korhaan	Eupodotis caerulescens	Grass	LC	NT	-17.60	-0.097	0.31	-18.37	-15.74	-0.482	1300	206307	284310	71361	3.37
Chorister Robin-Chat	Cossypha dichroa	Forest	LC	LC	-24.73	-0.092	0.34	-21.20	-17.35	-0.400	46	123201	183708	32724	2.29
Cape Siskin *	Crithagra totta	Fynbos	LC	LC	-18.16	-0.090	0.31	-15.00	-5.83	-0.398	13	83835	106434	28107	2.65
Orange-breasted Sunbird *	Anthobaphes violacea	Fynbos	LC	LC	-17.28	-0.081	0.29	-9.93	-7.35	-0.674	9	97686	115911	35316	2.87
Yellow-breasted Pipit *	Anthus chloris	Grass	VU	VU	-4.44	-0.074	0.44	-21.43	7.14	0.107	25	24057	45198	4617	1.39
Karoo Eremomela	Eremomela gregalis	Karoo	LC	LC	8.52	-0.074	0.41	-21.56	-18.35	-0.142	8	99144	204120	19926	2.29
Jackal Buzzard	Buteo rufofuscus	Generalist	LC	LC	-7.09	-0.072	0.32	-17.43	-15.34	-0.013	1340	713691	1043199	280179	3.26
Grey Tit	Parus afer	Karoo	LC	LC	-4.69	-0.067	0.35	-14.11	-12.00	-0.340	20	262440	411156	63747	3.13
Sickle-winged Chat	Cercomela sinuate	Karoo	LC	LC	-0.67	-0.066	0.38	-17.49	-13.85	-0.086	19	298890	500094	66501	2.74
Cape Sugarbird *	Promerops cafer	Fynbos	LC	LC	-7.87	-0.065	0.30	-11.38	-5.16	-0.425	35	105705	128304	44469	2.91
Forest Canary	Crithagra scotops	Forest	LC	LC	-14.02	-0.062	0.34	-14.80	-9.80	-0.097	15	137052	190998	40986	2.31
Namaqua Warbler	Phragmacia substriata	Karoo	LC	LC	-11.44	-0.057	0.36	-12.61	-11.69	-0.206	12	214326	312741	51840	2.65
Buff-streaked Chat	Campicoloides bifasciata	Grass	LC	LC	-3.98	-0.055	0.35	-16.59	-13.93	-0.090	35	131949	189540	44388	2.76
Forest Buzzard	Buteo trizonatus	Forest	LC	LC	-7.15	-0.040	0.39	-13.92	-3.05	0.118	660	98415	142884	27135	1.92
Southern Double-collared Sunbird	Cinnyris chalybeus	Generalist	LC	LC	4.20	-0.037	0.29	-11.23	-9.73	0.037	8	421362	558414	183222	3.09
South African Cliff Swallow	Petrochelidon spilodera	Generalist	LC	LC	12.09	-0.035	0.34	-15.81	-10.82	0.329	21	359397	523422	158355	2.89
Cape Weaver	Ploceus capensis	Generalist	LC	LC	8.14	-0.025	0.29	-7.28	-6.24	0.113	46	613818	769824	279531	3.23
Drakensberg Siskin	Crithagra symonsi	Grass	LC	LC	16.96	-0.022	0.36	-5.00	2.78	0.137	13	29889	43011	5832	2.64
Bush Blackcap	Lioptilus nigricapillus	Grass, Forest	VU	NT	-19.52	-0.019	0.43	-6.25	11.11	0.206	31	54675	87480	10368	1.54
Large-billed Lark	Galerida magnirostris	Karoo	LC	LC	8.59	-0.017	0.32	-8.79	-7.77	0.210	45	401679	564246	132192	3.44
Southern Tchagra	Tchagra tchagra	Thicket	LC	LC	2.51	-0.017	0.34	-9.35	-6.57	0.196	47	201204	264627	64638	2.85
African Rock Pipit	Anthus crenatus	Grass	NT	LC	36.65	-0.014	0.40	-12.81	-8.22	0.265	31	156735	250776	33858	2.3
Greater Double-collared Sunbird	Cinnyris afer	Generalist	LC	LC	9.74	-0.010	0.31	-6.35	-3.46	0.213	12.5	331695	412614	132597	3.02
Fiscal Flycatcher	Sigelus silens	Generalist	LC	LC	13.17	-0.008	0.28	-7.58	-6.21	0.357	26	858762	1071630	395928	3.38
Layard's Tit-Babbler	Sylvia layardi	Karoo	LC	LC	32.15	-0.005	0.39	-8.79	-4.96	0.229	15	282852	460728	68769	2.68
Barratt's Warbler	Bradypterus barratti	Grass	LC	LC	1.51	-0.004	0.39	-10.56	-3.57	0.384	19	91125	134865	20736	2.13

Brown Scrub Robin	Erythropygia signata	Forest	LC	LC	8.69	0.003	0.35	-6.19	7.95	0.362	38	75816	97686	18387	1.84
Cape Spurfowl	Pternistis capensis	Generalist	LC	LC	8.29	0.007	0.27	-4.27	-3.49	0.332	820	161838	195372	82215	2.93
Karoo Lark	Calendulauda albescens	Karoo	LC	LC	36.91	0.010	0.36	-2.09	0.44	0.168	29	176418	250047	49329	3.12
Knysna Warbler *	Bradypterus sylvaticus	Forest	VU	VU	50.20	0.027	0.41	-2.33	5.26	0.836	21	30618	41553	6399	1.47
Southern Bald Ibis	Geronticus calvus	Grass	VU	VU	-1.38	0.030	0.33	4.44	7.76	0.095	1100	188811	225990	72171	3.34
Cape Grassbird	Sphenoeacus afer	Grass, Fynbos	LC	LC	37.97	0.047	0.33	-3.19	-0.20	0.848	30	371061	464373	156006	2.96
Victorin's Warbler *	Cryptillas victorini	Fynbos	LC	LC	12.09	0.049	0.35	1.47	4.84	0.377	19	50301	61236	14256	2.22
Mountain Pipit	Anthus hoeschi	Grass	NT	LC	100.99	0.049	0.40	-8.70	0.00	0.596	27	16767	26244	2106	2.22
Melodious Lark	Mirafra cheniana	Grass	LC	NT	63.12	0.050	0.42	4.43	13.18	0.443	20	120285	174960	29160	2.33
Cape Bulbul *	Pycnonotus capensis	Generalist	LC	LC	27.22	0.065	0.22	0.72	1.09	1.189	39	199746	219429	115992	3.18
Cloud Cisticola	Cisticola textrix	Grass	LC	LC	93.66	0.073	0.35	-5.79	-1.48	1.063	9	414072	518319	173745	3.06
Red Lark *	Calendulauda burra	Desert	VU	VU	140.84	0.084	0.43	5.56	11.76	1.063	37	16767	41553	4455	2.09
Knysna Woodpecker *	Campethera notata	Forest, Thicket	NT	NT	107.12	0.126	0.34	1.64	4.50	1.741	62	87480	106434	26487	2.45

Figure 1: Area and intensity of coverage during the two atlas periods. Colours represent log of number of lists reported for each grid cell, with red high and blue low. SABAP2 coverage is shown to 30 May 2014, as the project is ongoing.

Figure 2: Reporting rate change for 58 South African endemic bird species plotted against change in reported range between SABAP1 and SABAP2. Named species have threatened status: Endangered (red), Near Threatened (blue), Vulnerable (purple). Green dots are species without threatened status (Least Concern). Point size represents the absolute value of the mean z-score.

Figure 3: Reporting rate change for seven South African endemic bird species plotted against change in range between SABAP1 and SABAP2. This figure shows the lower left hand corner of Figure 2 in more detail - species qualifying as those of conservation concern due to range and population decrease. Size of the points is weighted by mean z-score.

Figure 4: Presence/absence ratios for 58 endemic bird species for each atlas period. Species on the negative end of the x-axis are generally infrequently reported, while those on the positive side are commonly reported: negative values indicate species reported from less than 50% of cells. Shading represents the 95% confidence interval of the regression between the values on the two axes.

Species below the 1:1 line (black diagonal) are species reported less frequently in SABAP2. Selected species classified as Least Concern with a lower reporting rate in SABAP2 are labelled, as are selected species with threatened status with higher reporting rates in SABAP2.

Figure 5: Mean population change across all species within each grid cell (left panel). N for each grid cell is indicated by endemic species richness (right panel). Grids not included in this analysis due to insufficient coverage (<2 lists for both atlas periods) are white with black points.

Cambridge University Press

Figure 6: Connectivity (left-hand panels) and corrected connectivity (connected score/log(range); right hand panels) for southern African endemic bird species. The lower two charts are the lower left sections of the upper charts, indicating species with small ranges and low connectivity; QDGC = quarter degree grid cells.

